Propagating Plasmons in a Charge-Neutral Quantum Tunneling Transistor

被引:15
|
作者
Woessner, Achim [1 ]
Misra, Abhishek [2 ]
Cao, Yang [3 ]
Torre, Iacopo [4 ,5 ]
Mishchenko, Artem [2 ,3 ]
Lundeberg, Mark B. [1 ]
Watanabe, Kenji [6 ]
Taniguchi, Takashi [6 ]
Polini, Marco [5 ]
Novoselov, Kostya S. [2 ,3 ]
Koppens, Frank H. L. [1 ,7 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Barcelona 08860, Spain
[2] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[3] Univ Manchester, Natl Graphene Inst, Booth St E, Manchester M13 9PL, Lancs, England
[4] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[5] Ist Italiano Tecnol, Graphene Labs, Via Morego 30, I-16163 Genoa, Italy
[6] Natl Inst Mat Sci, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[7] ICREA, Barcelona, Spain
来源
ACS PHOTONICS | 2017年 / 4卷 / 12期
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
graphene plasmons; graphene tunneling device; s-SNOM; nano-optics; highly doped graphene; BORON-NITRIDE; GRAPHENE;
D O I
10.1021/acsphotonics.7b01020
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The ultimate limit of control of light at the nanoscale is the atomic scale. By stacking multiple layers of graphene on hexagonal boron nitride (h-BN), heterostructures with unique nanophotonic properties can be constructed, where the distance between plasmonic materials can be controlled with atom-scale precision. Here we show how an atomically thick tunable quantum tunnelling device can be used as a building block for quantum plasmonics. The device consists of two layers of graphene separated by 1 nm (three monolayers) of h-BN, and a bias voltage between the layers generates an electron gas coupled to a hole gas. We show that, even though its total charge is zero, this system is capable of supporting propagating graphene plasmons.
引用
收藏
页码:3012 / 3017
页数:6
相关论文
共 50 条
  • [1] Charge-neutral electronic excitations in quantum insulators
    Wu, Sanfeng
    Schoop, Leslie M.
    Sodemann, Inti
    Moessner, Roderich
    Cava, Robert J.
    Ong, N. P.
    NATURE, 2024, 635 (8038) : 301 - 310
  • [2] Probing the optical conductivity of trapped charge-neutral quantum gases
    Wu, Zhigang
    Taylor, Edward
    Zaremba, Eugene
    EPL, 2015, 110 (02)
  • [3] Quantum hall states near the charge-neutral dirac point in graphene
    Jiang, Z.
    Zhang, Y.
    Stormer, H. L.
    Kim, P.
    PHYSICAL REVIEW LETTERS, 2007, 99 (10)
  • [4] Charge-neutral defects control conductivity
    Lim, Ji Soo
    Yang, Chan-Ho
    NATURE MATERIALS, 2020, 19 (11) : 1132 - 1133
  • [5] Charge-neutral defects control conductivity
    Ji Soo Lim
    Chan-Ho Yang
    Nature Materials, 2020, 19 : 1132 - 1133
  • [6] No heat flow in charge-neutral graphene
    Zhou, Haoxin
    NATURE PHYSICS, 2024, 20 (12) : 1849 - 1850
  • [7] Automatic capture verification by charge-neutral sensing
    Kadhiresan, VA
    Olive, A
    Gornick, C
    Spinelli, J
    Villalta, D
    PACE-PACING AND CLINICAL ELECTROPHYSIOLOGY, 1999, 22 (01): : 73 - 78
  • [8] Towards quantum-limited coherent detection of terahertz waves in charge-neutral graphene
    Lara-Avila, S.
    Danilov, A.
    Golubev, D.
    He, H.
    Kim, K. H.
    Yakimova, R.
    Lombardi, F.
    Bauch, T.
    Cherednichenko, S.
    Kubatkin, S.
    NATURE ASTRONOMY, 2019, 3 (11) : 983 - 988
  • [9] Global phase diagram of charge-neutral graphene in the quantum Hall regime for generic interactions
    De, Suman Jyoti
    Das, Ankur
    Rao, Sumathi
    Kaul, Ribhu K.
    Murthy, Ganpathy
    PHYSICAL REVIEW B, 2023, 107 (12)
  • [10] Towards quantum-limited coherent detection of terahertz waves in charge-neutral graphene
    S. Lara-Avila
    A. Danilov
    D. Golubev
    H. He
    K. H. Kim
    R. Yakimova
    F. Lombardi
    T. Bauch
    S. Cherednichenko
    S. Kubatkin
    Nature Astronomy, 2019, 3 : 983 - 988