Convergence of formal CR mappings into strongly pseudoconvex Cauchy-Riemann manifolds

被引:9
作者
Lamel, Bernhard [1 ]
Mir, Nordine [2 ]
机构
[1] Univ Wien, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
基金
奥地利科学基金会;
关键词
REAL-ANALYTIC HYPERSURFACES; HOLOMORPHIC MAPPINGS; DIFFERENT DIMENSIONS; COMPLEX-SPACES; MAPS; HYPERQUADRICS; SUBMANIFOLDS; CODIMENSION; SIGNATURE;
D O I
10.1007/s00222-017-0743-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that any formal holomorphic mapping sending a real-analytic generic submanifold M subset of C-N of finite type into a real-analytic strongly pseudoconvex CR submanifold M' subset of C-N' is necessarily convergent. As a consequence, we obtain a positive answer to the long-standing open question of whether formal holomorphic maps sending real-analytic strongly pseudoconvex hypersurfaces into each other are convergent.
引用
收藏
页码:963 / 985
页数:23
相关论文
共 27 条
[1]  
[Anonymous], 1999, Princeton Mathematical Series
[2]  
[Anonymous], 1974, Acta Math.
[3]  
Artin M., 1968, Inventiones Math, V5, P277, DOI DOI 10.1007/BF01389777
[4]   HOLOMORPHIC MAPPINGS BETWEEN HYPERQUADRICS WITH SMALL SIGNATURE DIFFERENCE [J].
Baouendi, M. Salah ;
Ebenfelt, Peter ;
Huang, Xiaojun .
AMERICAN JOURNAL OF MATHEMATICS, 2011, 133 (06) :1633-1661
[5]  
Baouendi MS, 2005, J DIFFER GEOM, V69, P379
[6]   Convergence and finite determination of formal CR mappings [J].
Baouendi, MS ;
Ebenfelt, P ;
Rothschild, LP .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (04) :697-723
[7]  
BAOUENDI MS, 2002, J GEOM ANAL, V12, P543
[8]   ON THE C∞ VERSION OF THE REFLECTION PRINCIPLE FOR MAPPINGS BETWEEN CR MANIFOLDS [J].
Berhanu, S. ;
Xiao, Ming .
AMERICAN JOURNAL OF MATHEMATICS, 2015, 137 (05) :1365-1400
[9]  
Berhanu S., 2008, NEW MATH MONOGRAPHS, V6
[10]   LOCAL AND INFINITESIMAL RIGIDITY OF HYPERSURFACE EMBEDDINGS [J].
Della Sala, Giuseppe ;
Lamel, Bernhard ;
Reiter, Michael .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (11) :7829-7860