High-performance GaN and AlxGa1-xN ultraviolet avalanche photodiodes grown by MOCVD on bulk III-N substrates

被引:3
作者
Dupuis, Russell D. [1 ,2 ]
Ryou, Jae-Hyun [1 ]
Yoo, Dongwon [1 ,2 ]
Limb, J. B. [1 ]
Zhang, Yun [1 ]
Shen, Shyh-Chiang [1 ]
Yoder, Douglas [3 ]
机构
[1] Georgia Inst Technol, Ctr Cpds Semicond, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol Savannah, Savannah, GA 31704 USA
来源
ELECTRO-OPTICAL REMOTE SENSING, DETECTION, AND PHOTONIC TECHNOLOGIES AND THEIR APPLICATIONS | 2007年 / 6739卷
关键词
MOCVD; GaN; AlGaN; avalanche photodiodes; bioagent detection;
D O I
10.1117/12.738505
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Wide-bandgap GaN-based avalanche photodetectors (APDs) are important for photodetectors operating in UV spectral region. For the growth of GaN-based heteroepitaxial layers on lattice-mismatched substrates such as sapphire and SiC, a high density of defects is introduced, thereby causing device failure by premature microplasma breakdown before the electric field reaches the level of the bulk avalanche breakdown field, which has hampered the development of III-nitride based APDs. In this study, we investigate the growth and characterization of GaN and AlGaN-based APDs on bulk GaN and AIN substrates. Epitaxial layers of GaN and AlxGa1-xN p-i-n ultraviolet avalanche photodiodes were grown by metalorganic chemical vapor deposition (MOCVD). Improved crystalline and structural quality of epitaxial layers was achieved by employing optimum growth parameters on low-dislocation-density bulk substrates in order to minimize the defect density in epitaxially grown materials. GaN and AlGaN APDs were fabricated into 30 mu m- and 50 mu m-diameter circular mesas and the electrical and optoelectronic characteristics were measured. APD epitaxial structure and device design, material growth optimization, material characterizations, device fabrication, and device performance characteristics are reported.
引用
收藏
页数:14
相关论文
共 9 条
[1]  
Bhattacharya P., 1997, Semiconductor optoelectronic devices, V2nd ed.
[2]   Recent advances in avalanche photodiodes [J].
Campbell, JC ;
Demiguel, S ;
Ma, F ;
Beck, A ;
Guo, XY ;
Wang, SL ;
Zheng, XG ;
Li, XW ;
Beck, JD ;
Kinch, MA ;
Huntington, A ;
Coldren, LA ;
Decobert, J ;
Tscherptner, N .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2004, 10 (04) :777-787
[3]   Improved detection of the invisible [J].
Carrano, JC ;
Li, T ;
Grudowski, PA ;
Dupuis, RD ;
Campbell, JC .
IEEE CIRCUITS & DEVICES, 1999, 15 (05) :15-24
[4]   High-speed and low-noise SACM avalanche photodiodes with an impact-ionization-engineered multiplication region [J].
Duan, N ;
Wang, SL ;
Ma, F ;
Li, N ;
Campbell, JC ;
Wang, C ;
Coldren, LA .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (08) :1719-1721
[5]  
DUPUIS RD, 2003, WIDE ENERGY BANDGAP
[6]   GaN avalanche photodiodes grown by hydride vapor-phase epitaxy [J].
McIntosh, KA ;
Molnar, RJ ;
Mahoney, LJ ;
Lightfoot, A ;
Geis, MW ;
Molvar, KM ;
Melngailis, I ;
Aggarwal, RL ;
Goodhue, WD ;
Choi, SS ;
Spears, DL ;
Verghese, S .
APPLIED PHYSICS LETTERS, 1999, 75 (22) :3485-3487
[7]   IONIZATION COEFFICIENTS IN SEMICONDUCTORS - NONLOCALIZED PROPERTY [J].
OKUTO, Y ;
CROWELL, CR .
PHYSICAL REVIEW B, 1974, 10 (10) :4284-4296
[8]   Performance evaluation of high-power wide band-gap semiconductor rectifiers [J].
Trivedi, M ;
Shenai, K .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (09) :6889-6897
[9]   GaN avalanche photodiodes operating in linear-gain mode and Geiger mode [J].
Verghese, S ;
McIntosh, KA ;
Molnar, RJ ;
Mahoney, LJ ;
Aggarwal, RL ;
Geis, MW ;
Molvar, KM ;
Duerr, EK ;
Melngailis, I .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (03) :502-511