A variational problem for submanifolds in a sphere

被引:10
作者
Guo, Zhen [1 ]
Li, Haizhong [2 ]
机构
[1] Yunnan Normal Univ, Fac Math Sci, Kunming 650092, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2007年 / 152卷 / 04期
关键词
Euler-Lagrangian equation; integral inequality; Clifford torus; Veronese surface;
D O I
10.1007/s00605-007-0476-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let x: M -> Sn+p be an n-dimensional submanifold in an (n + p)-dimensional unit sphere Sn+p, M is called a Willmore submanifold (see [11], [16]) if it is a critical submanifold to the Willmore functional integral(M)(S - nH)(n/2)dv, where S = Sigma(alpha,i,j)(h(ij)(alpha))(2) is the square of the length of the second fundamental form, H is the mean curvature of M. In [11], the second author proved an integral inequality of Simons' type for n-dimensional compact Willmore submanifolds in Sn+p. In this paper, we discover that a similar integral inequality of Simons' type still holds for the critical submanifolds of the functional integral(M) (S - nH(2))dv. Moreover, it has the advantage that the corresponding Euler-Lagrange equation is simpler than the Willmore equation.
引用
收藏
页码:295 / 302
页数:8
相关论文
共 21 条
  • [1] [Anonymous], 1929, VORLESUNGEN DIFFEREN
  • [2] Barbosa JLM, 1997, ANN GLOB ANAL GEOM, V15, P277
  • [3] BRYANT RL, 1984, J DIFFER GEOM, V20, P23
  • [4] Chern SS, 1970, FUNCTIONAL ANAL RELA, P59, DOI [10.1007/978-3-642-48272-4_2, DOI 10.1007/978-3-642-25588-5_5, DOI 10.1007/978-3-642-48272-4_2]
  • [5] Guo Z., 2001, Results Math., V40, P205, DOI DOI 10.1007/BF03322706
  • [6] LOCAL RIGIDITY THEOREMS FOR MINIMAL HYPERSURFACES
    LAWSON, HB
    [J]. ANNALS OF MATHEMATICS, 1969, 89 (01) : 187 - &
  • [7] Li H., 2001, ASIAN J MATH, V5, P365, DOI [DOI 10.4310/AJM.2001.V5.N2.A4, DOI 10.4310/AJM.2001.v5.n2.a4]
  • [8] Global rigidity theorems of hypersurfaces
    Li, HZ
    [J]. ARKIV FOR MATEMATIK, 1997, 35 (02): : 327 - 351
  • [9] Quantization of curvature for compact surfaces in Sn
    Li, HZ
    Simon, U
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2003, 245 (02) : 201 - 216
  • [10] New examples of Willmore surfaces in Sn
    Li, HZ
    Vrancken, L
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2003, 23 (03) : 205 - 225