A variational problem for submanifolds in a sphere

被引:10
作者
Guo, Zhen [1 ]
Li, Haizhong [2 ]
机构
[1] Yunnan Normal Univ, Fac Math Sci, Kunming 650092, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2007年 / 152卷 / 04期
关键词
Euler-Lagrangian equation; integral inequality; Clifford torus; Veronese surface;
D O I
10.1007/s00605-007-0476-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let x: M -> Sn+p be an n-dimensional submanifold in an (n + p)-dimensional unit sphere Sn+p, M is called a Willmore submanifold (see [11], [16]) if it is a critical submanifold to the Willmore functional integral(M)(S - nH)(n/2)dv, where S = Sigma(alpha,i,j)(h(ij)(alpha))(2) is the square of the length of the second fundamental form, H is the mean curvature of M. In [11], the second author proved an integral inequality of Simons' type for n-dimensional compact Willmore submanifolds in Sn+p. In this paper, we discover that a similar integral inequality of Simons' type still holds for the critical submanifolds of the functional integral(M) (S - nH(2))dv. Moreover, it has the advantage that the corresponding Euler-Lagrange equation is simpler than the Willmore equation.
引用
收藏
页码:295 / 302
页数:8
相关论文
共 21 条
[1]  
[Anonymous], 1929, VORLESUNGEN DIFFEREN
[2]  
Barbosa JLM, 1997, ANN GLOB ANAL GEOM, V15, P277
[3]  
BRYANT RL, 1984, J DIFFER GEOM, V20, P23
[4]  
Chern SS, 1970, FUNCTIONAL ANAL RELA, P59, DOI [10.1007/978-3-642-48272-4_2, DOI 10.1007/978-3-642-25588-5_5, DOI 10.1007/978-3-642-48272-4_2]
[5]  
Guo Z., 2001, Results Math., V40, P205, DOI DOI 10.1007/BF03322706
[6]   LOCAL RIGIDITY THEOREMS FOR MINIMAL HYPERSURFACES [J].
LAWSON, HB .
ANNALS OF MATHEMATICS, 1969, 89 (01) :187-&
[7]  
Li H., 2001, ASIAN J MATH, V5, P365, DOI [DOI 10.4310/AJM.2001.V5.N2.A4, DOI 10.4310/AJM.2001.v5.n2.a4]
[8]   Global rigidity theorems of hypersurfaces [J].
Li, HZ .
ARKIV FOR MATEMATIK, 1997, 35 (02) :327-351
[9]   Quantization of curvature for compact surfaces in Sn [J].
Li, HZ ;
Simon, U .
MATHEMATISCHE ZEITSCHRIFT, 2003, 245 (02) :201-216
[10]   New examples of Willmore surfaces in Sn [J].
Li, HZ ;
Vrancken, L .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2003, 23 (03) :205-225