Analysis of the periodically fragmented environment model: I - Species persistence

被引:227
作者
Berestycki, H
Hamel, F
Roques, L
机构
[1] CAMS, EHESS, F-75006 Paris, France
[2] Univ Aix Marseille 3, LATP, Fac Sci & Tech, F-13397 Marseille, France
关键词
D O I
10.1007/s00285-004-0313-3
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper is concerned with the study of the stationary solutions of the equation u(t) - del. (A(x)del u) = f (x, u), x is an element of R-N, where the diffusion matrix A and the reaction term f are periodic in x. We prove existence and uniqueness results for the stationary equation and we then analyze the behaviour of the solutions of the evolution equation for large times. These results are expressed by a condition on the sign of the first eigenvalue of the associated linearized problem with periodicity condition. We explain the biological motivation and we also interpret the results in terms of species persistence in periodic environment. The effects of various aspects of heterogeneities, such as environmental fragmentation are also discussed.
引用
收藏
页码:75 / 113
页数:39
相关论文
共 52 条
[1]  
AGMON S, 1984, N HOLLAND MATH STUD, V92, P7, DOI DOI 10.1016/S0304-0208(08)73672-7
[2]  
Ammerman A. J., 1984, NEOLITHIC TRANSITION
[3]  
[Anonymous], CAMBRIDGE STUDIES AD
[4]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[5]   NUMBER OF SOLUTIONS OF CERTAIN SEMI-LINEAR ELLIPTIC PROBLEMS [J].
BERESTYCKI, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1981, 40 (01) :1-29
[6]  
Berestycki H, 2005, J EUR MATH SOC, V7, P173
[7]   TRAVELING FRONTS IN CYLINDERS [J].
BERESTYCKI, H ;
NIRENBERG, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (05) :497-572
[8]   Some properties of monotone rearrangement with applications to elliptic equations in cylinders [J].
Berestycki, H ;
Lachand-Robert, T .
MATHEMATISCHE NACHRICHTEN, 2004, 266 :3-19
[9]   Front propagation in periodic excitable media [J].
Berestycki, H ;
Hamel, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (08) :949-1032
[10]   THE PRINCIPAL EIGENVALUE AND MAXIMUM PRINCIPLE FOR 2ND-ORDER ELLIPTIC-OPERATORS IN GENERAL DOMAINS [J].
BERESTYCKI, H ;
NIRENBERG, L ;
VARADHAN, SRS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (01) :47-92