SCATTERING BELOW THE GROUND STATE FOR THE 2d RADIAL NONLINEAR SCHRODINGER EQUATION

被引:18
作者
Arora, Anudeep Kumar [1 ]
Dodson, Benjamin [2 ]
Murphy, Jason [3 ]
机构
[1] Florida Int Univ, Dept Math & Stat, Miami, FL 33199 USA
[2] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
[3] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
关键词
PROOF;
D O I
10.1090/proc/14824
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We revisit the problem of scattering below the ground state threshold for the mass-supercritical focusing nonlinear Schrodinger equation in two space dimensions. We present a simple new proof that treats the case of radial initial data. The key ingredient is a localized virial/Morawetz estimate; the radial assumption aids in controlling the error terms resulting from the spatial localization.
引用
收藏
页码:1653 / 1663
页数:11
相关论文
共 16 条
[1]   Blowup and scattering problems for the nonlinear Schrodinger equations [J].
Akahori, Takafumi ;
Nawa, Hayato .
KYOTO JOURNAL OF MATHEMATICS, 2013, 53 (03) :629-672
[2]  
Cazenave T., 2003, Courant Lecture Notes in Mathematics, V10, DOI DOI 10.1090/CLN/010
[3]   A new proof of scattering below the ground state for the non-radial focusing NLS [J].
Dodson, Benjamin ;
Murphy, Jason .
MATHEMATICAL RESEARCH LETTERS, 2018, 25 (06) :1805-1825
[4]   A NEW PROOF OF SCATTERING BELOW THE GROUND STATE FOR THE 3D RADIAL FOCUSING CUBIC NLS [J].
Dodson, Benjamin ;
Murphy, Jason .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (11) :4859-4867
[5]  
Duyckaerts T, 2008, MATH RES LETT, V15, P1233
[6]   Scattering for the focusing energy-subcritical nonlinear Schrodinger equation [J].
Fang DaoYuan ;
Xie Jian ;
Cazenave Thierry .
SCIENCE CHINA-MATHEMATICS, 2011, 54 (10) :2037-2062
[7]   SMOOTHING PROPERTIES AND RETARDED ESTIMATES FOR SOME DISPERSIVE EVOLUTION-EQUATIONS [J].
GINIBRE, J ;
VELO, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (01) :163-188
[8]   Global Behavior of Finite Energy Solutions to the d-Dimensional Focusing Nonlinear Schrodinger Equation [J].
Guevara, Cristi Darley .
APPLIED MATHEMATICS RESEARCH EXPRESS, 2014, (02) :177-243
[9]  
Guo Z., ARXIV190601804
[10]   A sharp condition for scattering of the radial 3D cubic nonlinear Schrodinger equation [J].
Holmer, Justin ;
Roudenko, Svetlana .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 282 (02) :435-467