Effect of remote sensing spatial resolution on interpreting tower-based flux observations

被引:123
作者
Li, Fuqin [1 ]
Kustas, William P. [1 ]
Anderson, Martha C. [1 ]
Prueger, John H. [2 ]
Scott, Russell L. [3 ]
机构
[1] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA
[2] USDA ARS, Natl Soil Tilth Lab, Ames, IA 50011 USA
[3] USDA ARS, SW Watershed Res Ctr, Tucson, AZ 85719 USA
关键词
remote sensing; spatial resolution; land surface flux; footprint;
D O I
10.1016/j.rse.2006.11.032
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Validation comparisons between satellite-based surface energy balance models and tower-based flux measurements over heterogeneous landscapes can be strongly influenced by the spatial resolution of the remote sensing inputs. In this paper, a two-source energy balance model developed to use thermal and visible/near-infrared remotely sensed data is applied to Landsat imagery collected during the 2004 Soil Moisture Experiment (SMEX04) conducted in southern Arizona. Using a two dimensional flux-footprint algorithm, modeled surface fluxes are compared to tower measurements at three locations in the SMEX04 study area: two upland sites, and one riparian site. The effect of pixel resolution on evaluating the performance of the land surface model and interpreting spatial variations of land surface fluxes over these heterogeneous areas is evaluated. Three Landsat scenes were examined, one representing the dry season and the other two representing the relatively wet monsoon season. The model was run at three resolution scales: namely the Landsat visible/near-infrared band resolution (30 m), the Landsat 5 thermal band resolution (120 m), and 960 m, which is nominally the MODIS thermal resolution at near-nadir. Comparisons between modeled and measured fluxes at the three tower sites showed good agreement at the 30 m and 120 m resolutions - pixel scales at which the source area influencing the tower measurement (similar to 100 m) is reasonably resolved. At 960 m, the agreement is relatively poor, especially for the latent heat flux, due to subpixel heterogeneity in land surface conditions at scales exceeding the tower footprint. Therefore in this particular landscape, thermal data at 1-km resolution are not useful in assessing the intrinsic accuracy of the land-surface model in comparison with tower fluxes. Furthermore, important spatial patterns in the landscape are lost at this resolution. Currently, there are no definite plans supporting high resolution thermal data with regular global coverage below similar to 700 m after Landsat 5 and ASTER fail. This will be a serious problem for the application and validation of thermal-based land-surface models over heterogeneous landscapes. Published by Elsevier Inc.
引用
收藏
页码:337 / 349
页数:13
相关论文
共 45 条
  • [1] A vegetation index based technique for spatial sharpening of thermal imagery
    Agam, Nurit
    Kustas, William P.
    Anderson, Martha C.
    Li, Fuqin
    Neale, Christopher M. U.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2007, 107 (04) : 545 - 558
  • [2] Effects of vegetation clumping on two-source model estimates of surface energy fluxes from an agricultural landscape during SMACEX
    Anderson, MC
    Norman, JM
    Kustas, WP
    Li, FQ
    Prueger, JH
    Mecikalski, JR
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2005, 6 (06) : 892 - 909
  • [3] Anderson MC, 2004, J HYDROMETEOROL, V5, P343, DOI 10.1175/1525-7541(2004)005<0343:AMRSMF>2.0.CO
  • [4] 2
  • [5] MODTRAN cloud and multiple scattering upgrades with application to AVIRIS
    Berk, A
    Bernstein, LS
    Anderson, GP
    Acharya, PK
    Robertson, DC
    Chetwynd, JH
    Adler-Golden, SM
    [J]. REMOTE SENSING OF ENVIRONMENT, 1998, 65 (03) : 367 - 375
  • [6] RELATIONS BETWEEN EVAPORATION COEFFICIENTS AND VEGETATION INDEXES STUDIED BY MODEL SIMULATIONS
    CHOUDHURY, BJ
    AHMED, NU
    IDSO, SB
    REGINATO, RJ
    DAUGHTRY, CST
    [J]. REMOTE SENSING OF ENVIRONMENT, 1994, 50 (01) : 1 - 17
  • [7] RELATIONSHIPS BETWEEN VEGETATION INDEXES, RADIATION ABSORPTION, AND NET PHOTOSYNTHESIS EVALUATED BY A SENSITIVITY ANALYSIS
    CHOUDHURY, BJ
    [J]. REMOTE SENSING OF ENVIRONMENT, 1987, 22 (02) : 209 - 233
  • [8] Intercomparison of spatially distributed models for predicting surface energy flux patterns during SMACEX
    Crow, WT
    Li, FQ
    Kustas, WP
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2005, 6 (06) : 941 - 953
  • [9] Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy
    Detto, Matteo
    Montaldo, Nicola
    Albertson, John D.
    Mancini, Marco
    Katul, Gaby
    [J]. WATER RESOURCES RESEARCH, 2006, 42 (08)
  • [10] Estimating land surface energy budgets from space - Review and current efforts at the University of Wisconsin-Madison and USDA-ARS
    Diak, GR
    Mecikalski, JR
    Anderson, MC
    Norman, JM
    Kustas, WP
    Torn, RD
    DeWolf, RL
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2004, 85 (01) : 65 - +