Schrodinger Equations on Damek-Ricci Spaces

被引:16
作者
Anker, Jean-Philippe [1 ,2 ,3 ]
Pierfelice, Vittoria [1 ,2 ,3 ]
Vallarino, Maria [4 ]
机构
[1] Lab MAPMO, UMR 6628, F-45067 Orleans 2, France
[2] Univ Orleans, Orleans, France
[3] CNRS, Federat Denis Poisson FR 2964, F-45071 Orleans, France
[4] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Milan, Italy
关键词
Damek-Ricci spaces; Dispersive estimate; Heat kernel estimate; Schrodinger equation; Strichartz estimate; NONCOMPACT SYMMETRIC-SPACES; LAPLACE-BELTRAMI OPERATOR; HYPERBOLIC SPACE; SINGULAR-INTEGRALS; WAVE-EQUATION; STRICHARTZ INEQUALITIES; SPECTRAL MULTIPLIERS; EXPONENTIAL-GROWTH; HEAT KERNEL; MANIFOLDS;
D O I
10.1080/03605302.2010.539658
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the Laplace-Beltrami operator on Damek-Ricci spaces and derive pointwise estimates for the kernel of e, when * with Re epsilon 0. When i*, we obtain in particular pointwise estimates of the Schrodinger kernel associated with . We then prove Strichartz estimates for the Schrodinger equation, for a family of admissible pairs which is larger than in the Euclidean case. This extends the results obtained by Anker and Pierfelice [4] on real hyperbolic spaces. As a further application, we study the dispersive properties of the Schrodinger equation associated with a distinguished Laplacian on Damek-Ricci spaces, showing that in this case the standard L1L estimate fails while suitable weighted Strichartz estimates hold.
引用
收藏
页码:976 / 997
页数:22
相关论文
共 50 条
[41]   WAVE AND KLEIN-GORDON EQUATIONS ON HYPERBOLIC SPACES [J].
Anker, Jean-Philippe ;
Pierfelice, Vittoria .
ANALYSIS & PDE, 2014, 7 (04) :953-995
[42]   The Schrodinger equation in LP spaces for operators with heat kernel satisfying Poisson type bounds [J].
Chen, Peng ;
Duong, Xuan Thinh ;
Fan, Zhijie ;
Li, Ji ;
Yan, Lixin .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2022, 74 (01) :285-331
[43]   Strichartz Estimates for Schrodinger Equations on Scattering Manifolds [J].
Mizutani, Haruya .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (02) :169-224
[44]   OPTIMAL SENSOR LOCATION FOR WAVE AND SCHRODINGER EQUATIONS [J].
Privat, Yannick ;
Trelat, Emmanuel ;
Zuazua, Enrique .
HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 :89-107
[45]   Local mollification of Riemannian metrics using Ricci flow, and Ricci limit spaces [J].
Simon, Miles ;
Topping, Peter M. .
GEOMETRY & TOPOLOGY, 2021, 25 (02) :913-948
[46]   Sharp endpoint estimates for Schrodinger groups on Hardy spaces [J].
Chen, Peng ;
Duong, Xuan Thinh ;
Li, Ji ;
Yan, Lixin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 371 :660-690
[47]   Well-posedness for a system of quadratic derivative nonlinear Schrodinger equations in almost critical spaces [J].
Hirayama, Hiroyuki ;
Kinoshita, Shinya ;
Okamoto, Mamoru .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 499 (02)
[48]   On quotients of spaces with Ricci curvature bounded below [J].
Galaz-Garcia, Fernando ;
Kell, Martin ;
Mondino, Andrea ;
Sosa, Gerardo .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (06) :1368-1446
[49]   Modified Ricci flow and asymptotically nonflat spaces [J].
Chatterjee, Shubhayu ;
Banerjee, Narayan .
CANADIAN JOURNAL OF PHYSICS, 2013, 91 (03) :198-200
[50]   ON LOW-DIMENSIONAL RICCI LIMIT SPACES [J].
Honda, Shouhei .
NAGOYA MATHEMATICAL JOURNAL, 2013, 209 :1-22