Schrodinger Equations on Damek-Ricci Spaces

被引:16
作者
Anker, Jean-Philippe [1 ,2 ,3 ]
Pierfelice, Vittoria [1 ,2 ,3 ]
Vallarino, Maria [4 ]
机构
[1] Lab MAPMO, UMR 6628, F-45067 Orleans 2, France
[2] Univ Orleans, Orleans, France
[3] CNRS, Federat Denis Poisson FR 2964, F-45071 Orleans, France
[4] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Milan, Italy
关键词
Damek-Ricci spaces; Dispersive estimate; Heat kernel estimate; Schrodinger equation; Strichartz estimate; NONCOMPACT SYMMETRIC-SPACES; LAPLACE-BELTRAMI OPERATOR; HYPERBOLIC SPACE; SINGULAR-INTEGRALS; WAVE-EQUATION; STRICHARTZ INEQUALITIES; SPECTRAL MULTIPLIERS; EXPONENTIAL-GROWTH; HEAT KERNEL; MANIFOLDS;
D O I
10.1080/03605302.2010.539658
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the Laplace-Beltrami operator on Damek-Ricci spaces and derive pointwise estimates for the kernel of e, when * with Re epsilon 0. When i*, we obtain in particular pointwise estimates of the Schrodinger kernel associated with . We then prove Strichartz estimates for the Schrodinger equation, for a family of admissible pairs which is larger than in the Euclidean case. This extends the results obtained by Anker and Pierfelice [4] on real hyperbolic spaces. As a further application, we study the dispersive properties of the Schrodinger equation associated with a distinguished Laplacian on Damek-Ricci spaces, showing that in this case the standard L1L estimate fails while suitable weighted Strichartz estimates hold.
引用
收藏
页码:976 / 997
页数:22
相关论文
共 50 条
  • [31] On smoothing estimates for Schrodinger equations on product spaces Tm x Rn
    Chen, Xianghong
    Guo, Zihua
    Shen, Minxing
    Yan, Lixin
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (04)
  • [32] On Schrodinger equations with modified dispersion
    Carles, Remi
    [J]. DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2011, 8 (03) : 173 - 183
  • [33] On Moduli Spaces of Ricci Solitons
    Podesta, Fabio
    Spiro, Andrea
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (02) : 1157 - 1174
  • [34] Boundary regularity and stability for spaces with Ricci bounded below
    Brue, Elia
    Naber, Aaron
    Semola, Daniele
    [J]. INVENTIONES MATHEMATICAE, 2022, 228 (02) : 777 - 891
  • [35] Strichartz estimatesfor the wave and Schrodinger equations with potentials of critical decay
    Burq, N
    Planchon, F
    Stalker, JG
    Tahvildar-Zadeh, S
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (06) : 1665 - 1680
  • [36] Entire solutions of multivalued nonlinear Schrodinger equations in Sobolev spaces with variable exponent
    Dinu, Teodora-Liliana
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (07) : 1414 - 1424
  • [37] A weighted estimate for two dimensional Schrodinger, matrix Schrodinger, and wave equations with resonance of the first kind at zero energy
    Toprak, Ebru
    [J]. JOURNAL OF SPECTRAL THEORY, 2017, 7 (04) : 1235 - 1284
  • [38] On nonlinear Schrodinger equations on the hyperbolic space
    Cencelj, Matija
    Farago, Istvan
    Horvath, Robert
    Repovs, Dusan D.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 492 (02)
  • [39] Strichartz estimates for the wave and Schrodinger equations with the inverse-square potential
    Burq, N
    Planchon, F
    Stalker, JG
    Tahvildar-Zadeh, AS
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 203 (02) : 519 - 549
  • [40] ON THE GLOBAL WELL-POSEDNESS OF ENERGY-CRITICAL SCHRODINGER EQUATIONS IN CURVED SPACES
    Ionescu, Alexandru D.
    Pausader, Benoit
    Staffilani, Gigliola
    [J]. ANALYSIS & PDE, 2012, 5 (04): : 705 - 746