Schrodinger Equations on Damek-Ricci Spaces

被引:16
作者
Anker, Jean-Philippe [1 ,2 ,3 ]
Pierfelice, Vittoria [1 ,2 ,3 ]
Vallarino, Maria [4 ]
机构
[1] Lab MAPMO, UMR 6628, F-45067 Orleans 2, France
[2] Univ Orleans, Orleans, France
[3] CNRS, Federat Denis Poisson FR 2964, F-45071 Orleans, France
[4] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Milan, Italy
关键词
Damek-Ricci spaces; Dispersive estimate; Heat kernel estimate; Schrodinger equation; Strichartz estimate; NONCOMPACT SYMMETRIC-SPACES; LAPLACE-BELTRAMI OPERATOR; HYPERBOLIC SPACE; SINGULAR-INTEGRALS; WAVE-EQUATION; STRICHARTZ INEQUALITIES; SPECTRAL MULTIPLIERS; EXPONENTIAL-GROWTH; HEAT KERNEL; MANIFOLDS;
D O I
10.1080/03605302.2010.539658
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the Laplace-Beltrami operator on Damek-Ricci spaces and derive pointwise estimates for the kernel of e, when * with Re epsilon 0. When i*, we obtain in particular pointwise estimates of the Schrodinger kernel associated with . We then prove Strichartz estimates for the Schrodinger equation, for a family of admissible pairs which is larger than in the Euclidean case. This extends the results obtained by Anker and Pierfelice [4] on real hyperbolic spaces. As a further application, we study the dispersive properties of the Schrodinger equation associated with a distinguished Laplacian on Damek-Ricci spaces, showing that in this case the standard L1L estimate fails while suitable weighted Strichartz estimates hold.
引用
收藏
页码:976 / 997
页数:22
相关论文
共 50 条
[21]   Blow up of fractional Schrodinger equations on manifolds with nonnegative Ricci curvature [J].
Zhang, Huali ;
Zhao, Shiliang .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (13) :10772-10785
[22]   Stability of nonlinear Schrodinger equations on modulation spaces [J].
Guo, Weichao ;
Chen, Jiecheng .
FRONTIERS OF MATHEMATICS IN CHINA, 2014, 9 (02) :275-301
[23]   Stability of solutions for nonlinear Schrodinger equations in critical spaces [J].
Li Dong ;
Zhang XiaoYi .
SCIENCE CHINA-MATHEMATICS, 2011, 54 (05) :973-986
[24]   Microlocal smoothing effect for Schrodinger equations in Gevrey spaces [J].
Kajitani, K ;
Taglialatela, G .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2003, 55 (04) :855-896
[25]   Schrodinger equations on compact symmetric spaces and Gauss sums [J].
Kakehi, Tomoyuki .
NONLINEAR DYNAMICS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 64 :311-318
[26]   Ricci Flow and Ricci Limit Spaces [J].
Topping, Peter M. .
GEOMETRIC ANALYSIS, 2020, 2263 :79-112
[27]   Nonlinear Schrodinger equation on real hyperbolic spaces [J].
Anker, Jean-Philippe ;
Pierfelice, Vittoria .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (05) :1853-1869
[28]   Iterative reconstruction algorithms for solving the Schrodinger equations on conical spaces [J].
Ndiaye, Joshua Warigue .
ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (01)
[29]   Resolvent estimates in amalgam spaces and asymptotic expansions for Schrodinger equations [J].
Galtbayar, Artbazar ;
Yajima, Kenji .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2013, 65 (02) :563-605
[30]   Wave packet analysis of Schrodinger equations in analytic function spaces [J].
Cordero, Elena ;
Nicola, Fabio ;
Rodin, Luigi .
ADVANCES IN MATHEMATICS, 2015, 278 :182-209