Schrodinger Equations on Damek-Ricci Spaces

被引:16
|
作者
Anker, Jean-Philippe [1 ,2 ,3 ]
Pierfelice, Vittoria [1 ,2 ,3 ]
Vallarino, Maria [4 ]
机构
[1] Lab MAPMO, UMR 6628, F-45067 Orleans 2, France
[2] Univ Orleans, Orleans, France
[3] CNRS, Federat Denis Poisson FR 2964, F-45071 Orleans, France
[4] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Milan, Italy
关键词
Damek-Ricci spaces; Dispersive estimate; Heat kernel estimate; Schrodinger equation; Strichartz estimate; NONCOMPACT SYMMETRIC-SPACES; LAPLACE-BELTRAMI OPERATOR; HYPERBOLIC SPACE; SINGULAR-INTEGRALS; WAVE-EQUATION; STRICHARTZ INEQUALITIES; SPECTRAL MULTIPLIERS; EXPONENTIAL-GROWTH; HEAT KERNEL; MANIFOLDS;
D O I
10.1080/03605302.2010.539658
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the Laplace-Beltrami operator on Damek-Ricci spaces and derive pointwise estimates for the kernel of e, when * with Re epsilon 0. When i*, we obtain in particular pointwise estimates of the Schrodinger kernel associated with . We then prove Strichartz estimates for the Schrodinger equation, for a family of admissible pairs which is larger than in the Euclidean case. This extends the results obtained by Anker and Pierfelice [4] on real hyperbolic spaces. As a further application, we study the dispersive properties of the Schrodinger equation associated with a distinguished Laplacian on Damek-Ricci spaces, showing that in this case the standard L1L estimate fails while suitable weighted Strichartz estimates hold.
引用
收藏
页码:976 / 997
页数:22
相关论文
共 50 条