DEUTERIUM-TRITIUM FUEL LAYER FORMATION FOR THE NATIONAL IGNITION FACILITY

被引:56
作者
Kozioziemski, B. J. [1 ]
Mapoles, E. R. [1 ]
Sater, J. D. [1 ]
Chernov, A. A. [1 ]
Moody, J. D. [1 ]
Lugten, J. B. [1 ]
Johnson, M. A. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
关键词
cryotarget; deuterium-tritium; NIF; INERTIAL CONFINEMENT FUSION; ICF CAPSULES; TARGETS; REQUIREMENTS; TEMPERATURE; FABRICATION; HOHLRAUMS;
D O I
10.13182/FST10-3697
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Inertial confinement fusion requires very smooth and uniform solid deuterium-tritium (D-T) fuel layers. The National Ignition Facility (NIF) point design calls for a 65- to 75-mu m-thick D-T fuel layer inside of a 2-mm-diam spherical ablator shell to be 1.5 K below the D-T melting temperature (T-m) of 19.79 K. We find that the layer quality depends on the initial crystal seeding, with the best layers grown from a single seed. The low modes of the layer are controlled by thermal shimming of the hohlraum and meet the NIF requirement with beryllium shells and nearly meet the requirement with plastic shells. The remaining roughness is localized in grain-boundary grooves and is minimal for a single crystal layer. Once formed, the layers need to be cooled to T-m - 1.5 K. We have studied dependence of the roughness on the cooling rate and found that cooling at rates of 0.03 to 0.5 K/s is able to preserve the layer structure for a few seconds after reaching the desired temperature. The entire fuel layer remains in contact with the shell during this rapid cooling. Thus, rapid cooling of the layers is able to satisfy the NIF ignition requirements.
引用
收藏
页码:14 / 25
页数:12
相关论文
共 25 条
  • [1] Solid solutions Ne-nD2.: Diagram of phase equilibrium
    Belan, VG
    Gal'tsov, NN
    Prokhvatilov, AI
    Strzhemechnyi, MA
    [J]. LOW TEMPERATURE PHYSICS, 2005, 31 (11) : 947 - 950
  • [2] BITTNER D, 1999, 13 TARG FABR SPEC M
  • [3] Forming uniform HD layers in shells using infrared radiation
    Bittner, DN
    Collins, GW
    Monsler, E
    Letts, S
    [J]. FUSION TECHNOLOGY, 1999, 35 (02): : 244 - 249
  • [4] Single crystal growth and formation of defects in deuterium-tritium layers for inertial confinement nuclear fusion
    Chernov, A. A.
    Kozioziemski, B. J.
    Koch, J. A.
    Atherton, L. J.
    Johnson, M. A.
    Hamza, A. V.
    Kucheyev, S. O.
    Lugten, J. B.
    Mapoles, E. A.
    Moody, J. D.
    Salmonson, J. D.
    Sater, J. D.
    [J]. APPLIED PHYSICS LETTERS, 2009, 94 (06)
  • [5] National Ignition Facility target design and fabrication
    Cook, R. C.
    Kozioziemski, B. J.
    Nikroo, A.
    Wilkens, H. L.
    Bhandarkar, S.
    Forsman, A. C.
    Haan, S. W.
    Hoppe, M. L.
    Huang, H.
    Mapoles, E.
    Moody, J. D.
    Sater, J. D.
    Seugling, R. M.
    Stephens, R. B.
    Takagi, M.
    Xu, H. W.
    [J]. LASER AND PARTICLE BEAMS, 2008, 26 (03) : 479 - 487
  • [6] IR absorptive properties of plastic materials used in ICF capsules
    Cook, RC
    Anthamatten, M
    Letts, SA
    Nikroo, A
    Czechowicz, DG
    [J]. FUSION SCIENCE AND TECHNOLOGY, 2004, 45 (02) : 148 - 156
  • [7] Overview of recent tritium target filling, layering, and material testing at Los Alamos National Laboratory in support of inertial fusion experiments
    Ebey, Peter S.
    Dole, James M.
    Geller, Drew A.
    Hoffer, James K.
    Morris, John
    Nobile, Arthur
    Schoonover, Jon R.
    Wilson, Doug
    Bonino, Mark
    Harding, David
    Sangster, Craig
    Shmayda, Walter
    Nikroo, Abbas
    Sheliak, John D.
    Burmann, John
    Cook, Bob
    Letts, Steve
    Sanchez, Jorge
    [J]. FUSION SCIENCE AND TECHNOLOGY, 2008, 54 (02) : 375 - 378
  • [8] REV3 UPDATE OF REQUIREMENTS FOR NIF IGNITION TARGETS
    Haan, S. W.
    Callahan, D. A.
    Edwards, M. J.
    Hammel, B. A.
    Ho, D. D.
    Jones, O. S.
    Lindl, J. D.
    MacGowan, B. J.
    Marinak, M. M.
    Munro, D. H.
    Pollaine, S. M.
    Salmonson, J. D.
    Spears, B. K.
    Suter, L. J.
    [J]. FUSION SCIENCE AND TECHNOLOGY, 2009, 55 (03) : 227 - 232
  • [9] Forming cryogenic targets for direct-drive experiments
    Harding, D. R.
    Meyerhofer, D. D.
    Loucks, S. J.
    Lund, L. D.
    Janezic, R.
    Elasky, L. M.
    Hinterman, T. H.
    Edgell, D. H.
    Seka, W.
    Wittman, M. D.
    Gram, R. Q.
    Jacobs-Perkins, D.
    Early, R.
    Duffy, T.
    Bonino, M. J.
    [J]. PHYSICS OF PLASMAS, 2006, 13 (05)
  • [10] RADIOACTIVELY INDUCED SUBLIMATION IN SOLID TRITIUM
    HOFFER, JK
    FOREMAN, LR
    [J]. PHYSICAL REVIEW LETTERS, 1988, 60 (13) : 1310 - 1313