Comment on "Theoretical Analysis and Circuit Verification for Fractional-Order Chaotic Behavior in a New Hyperchaotic System"

被引:0
|
作者
Singh, Jay Prakash [1 ]
Roy, B. K. [1 ]
机构
[1] Natl Inst Technol, Silchar 788010, Silchar, India
关键词
D O I
10.1155/2016/2795097
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Some comments on the paper "Theoretical Analysis and Circuit Verification for Fractional-Order Chaotic Behavior in a New Hyperchaotic System" (L. Liu and C. Liu, 2014) are pointed out in this letter. It is shown in this letter that the claimed hyperchaotic system exhibits a periodic behaviour for the chosen parameters and initial condition. However, the claimed hyperchaotic system exhibits chaotic behaviours for some other parameters.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] An Circuit Implementation for a Different Fractional-order Chaotic Switching System
    Liu, Licai
    Du, Chuanhong
    Huang, Lilian
    Liang, Lixiu
    Shi, Shuaishuai
    2018 10TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS (ICCCAS 2018), 2018, : 70 - 74
  • [42] CHAOTIC AND PERIODIC BEHAVIOR IN A FRACTIONAL-ORDER BIOLOGICAL SYSTEM
    Roy-Layinde, T. O.
    Omoteso, K. A.
    Ogooluwa, D. O.
    Oladunjoye, H. T.
    Laoye, J. A.
    ACTA PHYSICA POLONICA B, 2020, 51 (09): : 1885 - 1904
  • [43] Lag projective synchronization in fractional-order chaotic (hyperchaotic) systems
    Chen, Liping
    Chai, Yi
    Wu, Ranchao
    PHYSICS LETTERS A, 2011, 375 (21) : 2099 - 2110
  • [44] Robust synchronization for a class of fractional-order chaotic and hyperchaotic systems
    Li, Chunlai
    Su, Kalin
    Tong, Yaonan
    Li, Hongmin
    OPTIK, 2013, 124 (18): : 3242 - 3245
  • [45] A New Fractional-Order Chaotic System with Its Analysis, Synchronization, and Circuit Realization for Secure Communication Applications
    Rahman, Zain-Aldeen S. A.
    Jasim, Basil H.
    Al-Yasir, Yasir I. A.
    Hu, Yim-Fun
    Abd-Alhameed, Raed A.
    Alhasnawi, Bilal Naji
    MATHEMATICS, 2021, 9 (20)
  • [46] Numerical analysis of a fractional-order chaotic system based on conformable fractional-order derivative
    He, Shaobo
    Sun, Kehui
    Mei, Xiaoyong
    Yan, Bo
    Xu, Siwei
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (01):
  • [47] Numerical analysis of a fractional-order chaotic system based on conformable fractional-order derivative
    Shaobo He
    Kehui Sun
    Xiaoyong Mei
    Bo Yan
    Siwei Xu
    The European Physical Journal Plus, 132
  • [48] Characteristic Analysis of Fractional-Order 4D Hyperchaotic Memristive Circuit
    Mou, Jun
    Sun, Kehui
    Wang, Huihai
    Ruan, Jingya
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [49] A fractional-order hyperchaotic system and its synchronization
    Deng, Hongmin
    Li, Tao
    Wang, Qionghua
    Li, Hongbin
    CHAOS SOLITONS & FRACTALS, 2009, 41 (02) : 962 - 969
  • [50] Circuit simulation for synchronization of a fractional-order and integer-order chaotic system
    Diyi Chen
    Cong Wu
    Herbert H. C. Iu
    Xiaoyi Ma
    Nonlinear Dynamics, 2013, 73 : 1671 - 1686