Random constructions for translates of non-negative functions

被引:2
作者
Buczolich, Zoltan [1 ]
Hanson, Bruce [2 ]
Maga, Balazs [1 ]
Vertesy, Gaspar [1 ]
机构
[1] Eotvos Lorand Univ, Dept Anal, Pezmany Peter Setany 1-C, H-1117 Budapest, Hungary
[2] St Olaf Coll, Dept Math Stat & Comp Sci, Northfield, MN 55057 USA
关键词
Almost everywhere convergence; Asymptotically dense; Borel-Cantelli lemma; Laws of large numbers; Zero-one laws; KHINCHINS CONJECTURE; ASYMPTOTIC-BEHAVIOR; INFINITE MEASURE; SERIES; CONVERGENCE; SIGMA-F(NKX); SET;
D O I
10.1016/j.jmaa.2018.08.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose A is a discrete infinite set of nonnegative real numbers. We say that A is type 2 if the series s(x) = Sigma lambda Lambda f (x + lambda) does not satisfy a zero-one law. This means that we can find a non-negative measurable "witness function" f : R -> [0,+ infinity) such that both the convergence set C(f, Lambda) ={x : s(x) < + infinity} and its complement the divergence set D (f, Lambda) = {x : s(x) = +infinity} are of positive Lebesgue measure. If Lambda is not type 2 we say that A is type 1. The main result of our paper answers a question raised by Z. Buczolich, J-P. Kahane, and D. Mauldin. By a random construction we show that one can always choose a witness function which is the characteristic function of a measurable set. We also consider the effect on the type of a set A if we randomly delete its elements. Motivated by results concerning weighted sums Sigma c(n)f(nx)and the Khinchin conjecture, we also discuss some results about weighted sums Sigma(n=1) (infinity)c(n)f(x + lambda(n).) (c) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:491 / 505
页数:15
相关论文
共 21 条
  • [1] Convergence of series of dilated functions and spectral norms of GCD matrices
    Aistleitner, Christoph
    Berkes, Istvan
    Seip, Kristian
    Weber, Michel
    [J]. ACTA ARITHMETICA, 2015, 168 (03) : 221 - 246
  • [2] FROM KHINCHIN'S CONJECTURE ON STRONG UNIFORMITY TO SUPERUNIFORM MOTIONS
    Beck, Jozsef
    [J]. MATHEMATIKA, 2015, 61 (03) : 591 - 707
  • [3] ASYMPTOTIC-BEHAVIOR OF SIGMA-F(NKX) - APPLICATIONS
    BERKES, I
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 34 (04): : 347 - 365
  • [4] ASYMPTOTIC-BEHAVIOR OF SIGMA-F(NKX) - MAIN THEOREMS
    BERKES, I
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 34 (04): : 319 - 345
  • [5] ON SERIES Σ ckf(kx) AND KHINCHIN'S CONJECTURE
    Berkes, Istvan
    Weber, Michel
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2014, 201 (02) : 593 - 609
  • [6] Berkes I, 2009, MEM AM MATH SOC, V201, P1
  • [7] ALMOST SURE CONVERGENCE AND BOUNDED ENTROPY
    BOURGAIN, J
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1988, 63 (01) : 79 - 97
  • [8] On Series of Translates of Positive Functions. III
    Buczolich, Z.
    Maga, B.
    Vertesy, G.
    [J]. ANALYSIS MATHEMATICA, 2018, 44 (02) : 185 - 205
  • [9] On series of translates of positives functions
    Buczolich, Z
    Kahane, JP
    Mauldin, RD
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (04): : 261 - 264
  • [10] On the convergence of Σn=1∞f(nx) for measurable functions
    Buczolich, Z
    Mauldin, RD
    [J]. MATHEMATIKA, 1999, 46 (92) : 337 - 341