Metabolic fluxes and beyond-systems biology understanding and engineering of microbial metabolism

被引:58
作者
Kohlstedt, Michael [1 ]
Becker, Judith [1 ]
Wittmann, Christoph [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Biochem Engn Inst, D-38106 Braunschweig, Germany
关键词
Fluxome; Metabolic flux; Systems biology; Systems metabolic engineering; Multi omics; Metabolic network; CHROMATOGRAPHY-MASS-SPECTROMETRY; CENTRAL CARBON METABOLISM; C-13 LABELING EXPERIMENTS; AMINO-ACID PRODUCTION; L-LYSINE PRODUCTION; IN-VIVO FLUX; CORYNEBACTERIUM-GLUTAMICUM; ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; GLUTAMATE PRODUCTION;
D O I
10.1007/s00253-010-2854-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The recent years have seen tremendous progress towards the understanding of microbial metabolism on a higher level of the entire functional system. Hereby, huge achievements including the sequencing of complete genomes and efficient post-genomic approaches provide the basis for a new, fascinating era of research-analysis of metabolic and regulatory properties on a global scale. Metabolic flux (fluxome) analysis displays the first systems oriented approach to unravel the physiology of microorganisms since it combines experimental data with metabolic network models and allows determining absolute fluxes through larger networks of central carbon metabolism. Hereby, fluxes are of central importance for systems level understanding because they fundamentally represent the cellular phenotype as integrated output of the cellular components, i.e. genes, transcripts, proteins, and metabolites. A currently emerging and promising area of research in systems biology and systems metabolic engineering is therefore the integration of fluxome data in multi-omics studies to unravel the multiple layers of control that superimpose the flux network and enable its optimal operation under different environmental conditions.
引用
收藏
页码:1065 / 1075
页数:11
相关论文
共 104 条
[1]   Metabolic flux analysis in a nonstationary system:: Fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol [J].
Antoniewicz, Maciek R. ;
Kraynie, David F. ;
Laffend, Lisa A. ;
Gonzalez-Lergier, Joanna ;
Kelleher, Joanne K. ;
Stephanopoulos, Gregory .
METABOLIC ENGINEERING, 2007, 9 (03) :277-292
[2]   Elementary metabolite units (EMU): A novel framework for modeling isotopic distributions [J].
Antoniewicz, Maciek R. ;
Kelleher, Joanne K. ;
Stephanopoulos, Gregory .
METABOLIC ENGINEERING, 2007, 9 (01) :68-86
[3]   Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum [J].
Asakura, Yoko ;
Kimura, Eiichiro ;
Usuda, Yoshihiro ;
Kawahara, Yoshio ;
Matsui, Kazuhiko ;
Osumi, Tsuyoshi ;
Nakamatsu, Tsuyoshi .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2007, 73 (04) :1308-1319
[4]   Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources [J].
Becker, J ;
Klopprogge, C ;
Zelder, O ;
Heinzle, E ;
Wittmann, C .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (12) :8587-8596
[5]  
BECKER J, 2010, CHEM ENG LIFE SCI, V10, P1
[6]   Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum -: over expression and modification of G6P dehydrogenase [J].
Becker, Judith ;
Klopprogge, Corinna ;
Herold, Andrea ;
Zelder, Oskar ;
Bolten, Christoph J. ;
Wittmann, Christoph .
JOURNAL OF BIOTECHNOLOGY, 2007, 132 (02) :99-109
[7]   Metabolic Engineering of the Tricarboxylic Acid Cycle for Improved Lysine Production by Corynebacterium glutamicum [J].
Becker, Judith ;
Klopprogge, Corinna ;
Schroeder, Hartwig ;
Wittmann, Christoph .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (24) :7866-7869
[8]   Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum [J].
Becker, Judith ;
Klopprogge, Corinna ;
Wittmann, Christoph .
MICROBIAL CELL FACTORIES, 2008, 7 (1)
[9]   Metabolic flux distributions: genetic information, computational predictions, and experimental validation [J].
Blank, Lars M. ;
Kuepfer, Lars .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 86 (05) :1243-1255
[10]   Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast -: art. no. R49 [J].
Blank, LM ;
Kuepfer, L ;
Sauer, U .
GENOME BIOLOGY, 2005, 6 (06)