ON FOLIATIONS WITH NEF ANTI-CANONICAL BUNDLE

被引:18
作者
Druel, Stephane [1 ]
机构
[1] Univ Grenoble 1, Inst Fourier, UMR 5582, CNRS, BP 74, F-38402 St Martin Dheres, France
关键词
VARIETIES; MANIFOLDS;
D O I
10.1090/tran/6873
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that the anti-canonical bundle of a holomorphic foliation F on a complex projective manifold cannot be nef and big if either F is regular, or F has a compact leaf. Then we address codimension one regular foliations whose anti-canonical bundle is nef with maximal Kodaira dimension.
引用
收藏
页码:7765 / 7787
页数:23
相关论文
共 36 条
  • [1] Weak semistable reduction in characteristic 0
    Abramovich, D
    Karu, K
    [J]. INVENTIONES MATHEMATICAE, 2000, 139 (02) : 241 - 273
  • [2] The moduli b-divisor of an lc-trivial fibration
    Ambro, F
    [J]. COMPOSITIO MATHEMATICA, 2005, 141 (02) : 385 - 403
  • [3] [Anonymous], 1995, Ergebnisse der Mathematik und ihrer Grenzgebiete
  • [4] [Anonymous], ARXIV13033169
  • [5] [Anonymous], 1998, Cambridge Tracts in Mathematics
  • [6] [Anonymous], PROGR MATH
  • [7] On codimension 1 del Pezzo foliations on varieties with mild singularities
    Araujo, Carolina
    Druel, Stephane
    [J]. MATHEMATISCHE ANNALEN, 2014, 360 (3-4) : 769 - 798
  • [8] On Fano foliations
    Araujo, Carolina
    Druel, Stephane
    [J]. ADVANCES IN MATHEMATICS, 2013, 238 : 70 - 118
  • [9] Araujo Carolina, 2016, P C NEW YORK NY SEPT, P1
  • [10] Bogomolov Fedor, 2016, P C NEW YORK NY SEP, P21