Cheeger inequalities for unbounded graph Laplacians

被引:30
作者
Bauer, Frank [1 ,2 ]
Keller, Matthias [3 ,4 ]
Wojciechowski, Radoslaw K. [5 ,6 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[3] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
[4] Univ Jena, Math Inst, D-07743 Jena, Germany
[5] CUNY York Coll, Jamaica, NY 11451 USA
[6] CUNY, Grad Ctr, New York, NY 10016 USA
基金
欧洲研究理事会;
关键词
Isoperimetric inequality; intrinsic metric; Schrodinger operators; weighted graphs; curvature; volume growth; STOCHASTIC COMPLETENESS; ISOPERIMETRIC-INEQUALITIES; ESSENTIAL SPECTRUM; DIRICHLET FORMS; VOLUME GROWTH; INFINITE; CURVATURE; CONSTANT; SPACES; BOUNDS;
D O I
10.4171/JEMS/503
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the concept of intrinsic metrics to give a new definition for an isoperimetric constant of a graph. We use this novel isoperimetric constant to prove a Cheeger-type estimate for the bottom of the spectrum which is nontrivial even if the vertex degrees are unbounded.
引用
收藏
页码:259 / 271
页数:13
相关论文
共 51 条
[1]   LAMBDA-1, ISOPERIMETRIC-INEQUALITIES FOR GRAPHS, AND SUPERCONCENTRATORS [J].
ALON, N ;
MILMAN, VD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 38 (01) :73-88
[2]  
[Anonymous], 1997, CBMS Regional Conference Series in Mathematics
[3]  
[Anonymous], 2011, Ph.D. thesis
[4]  
[Anonymous], 1986, Pitman Res. Notes Math. Ser
[5]   THE NORMALIZED GRAPH CUT AND CHEEGER CONSTANT: FROM DISCRETE TO CONTINUOUS [J].
Arias-Castro, Ery ;
Pelletier, Bruno ;
Pudlo, Pierre .
ADVANCES IN APPLIED PROBABILITY, 2012, 44 (04) :907-937
[6]   The dual Cheeger constant and spectra of infinite graphs [J].
Bauer, Frank ;
Hua, Bobo ;
Jost, Juergen .
ADVANCES IN MATHEMATICS, 2014, 251 :147-194
[7]   THE SPECTRAL-RADIUS OF INFINITE-GRAPHS [J].
BIGGS, NL ;
MOHAR, B ;
SHAWETAYLOR, J .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 :116-120
[8]   SPECTRAL ANALYSIS OF CERTAIN SPHERICALLY HOMOGENEOUS GRAPHS [J].
Breuer, Jonathan ;
Keller, Matthias .
OPERATORS AND MATRICES, 2013, 7 (04) :825-847
[9]  
Cheeger J., 1970, PROBLEMS ANAL, P195
[10]  
Chung F., 2000, COMMUN ANAL GEOM, V8, P969