Low-rank approximations for large stationary covariance matrices, as used in the Bayesian and generalized-least-squares analysis of pulsar-timing data

被引:39
作者
van Haasteren, Rutger [1 ]
Vallisneri, Michele [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
基金
美国国家科学基金会;
关键词
gravitational waves; methods: data analysis; pulsars: general;
D O I
10.1093/mnras/stu2157
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Many data-analysis problems involve large dense matrices that describe the covariance of wide-sense stationary noise processes; the computational cost of inverting these matrices, or equivalently of solving linear systems that contain them, is often a practical limit for the analysis. We describe two general, practical, and accurate methods to approximate stationary covariance matrices as low-rank matrix products featuring carefully chosen spectral components. These methods can be used to greatly accelerate data-analysis methods in many contexts, such as the Bayesian and generalized-least-squares analysis of pulsar-timing residuals.
引用
收藏
页码:1170 / 1174
页数:5
相关论文
共 20 条
[1]  
[Anonymous], 1997, NUMERICAL LINEAR ALG
[2]   GRAVITATIONAL WAVES FROM INDIVIDUAL SUPERMASSIVE BLACK HOLE BINARIES IN CIRCULAR ORBITS: LIMITS FROM THE NORTH AMERICAN NANOHERTZ OBSERVATORY FOR GRAVITATIONAL WAVES [J].
Arzoumanian, Z. ;
Brazier, A. ;
Burke-Spolaor, S. ;
Chamberlin, S. J. ;
Chatterjee, S. ;
Cordes, J. M. ;
Demorest, P. B. ;
Deng, X. ;
Dolch, T. ;
Ellis, J. A. ;
Ferdman, R. D. ;
Garver-Daniels, N. ;
Jenet, F. ;
Jones, G. ;
Kaspi, V. M. ;
Koop, M. ;
Lam, M. T. ;
Lazio, T. J. W. ;
Lommen, A. N. ;
Lorimer, D. R. ;
Luo, J. ;
Lynch, R. S. ;
Madison, D. R. ;
McLaughlin, M. A. ;
McWilliams, S. T. ;
Nice, D. J. ;
Palliyaguru, N. ;
Pennucci, T. T. ;
Ransom, S. M. ;
Sesana, A. ;
Siemens, X. ;
Stairs, I. H. ;
Stinebring, D. R. ;
Stovall, K. ;
Swiggum, J. ;
Vallisneri, M. ;
van Haasteren, R. ;
Wang, Y. ;
Zhu, W. W. .
ASTROPHYSICAL JOURNAL, 2014, 794 (02)
[3]  
Bracewell R. N., 1978, FOURIER TRANSFORM IT
[4]  
Chalupka K, 2013, J MACH LEARN RES, V14, P333
[5]   Pulsar timing analysis in the presence of correlated noise [J].
Coles, W. ;
Hobbs, G. ;
Champion, D. J. ;
Manchester, R. N. ;
Verbiest, J. P. W. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 418 (01) :561-570
[6]   Product-form Cholesky factorization in interior point methods for second-order cone programming [J].
Goldfarb, D ;
Scheinberg, K .
MATHEMATICAL PROGRAMMING, 2005, 103 (01) :153-179
[7]   A product-form Cholesky factorization method for handling dense columns in interior point methods for linear programming [J].
Goldfarb, D ;
Scheinberg, K .
MATHEMATICAL PROGRAMMING, 2004, 99 (01) :1-34
[8]   UPDATING THE INVERSE OF A MATRIX [J].
HAGER, WW .
SIAM REVIEW, 1989, 31 (02) :221-239
[9]   SIMULATION OF A KOLMOGOROV PHASE SCREEN [J].
LANE, RG ;
GLINDEMANN, A ;
DAINTY, JC .
WAVES IN RANDOM MEDIA, 1992, 2 (03) :209-224
[10]  
Lázaro-Gredilla M, 2010, J MACH LEARN RES, V11, P1865