Deep Orange: Mask R-CNN based Orange Detection and Segmentation

被引:93
作者
Ganesh, P. [1 ]
Volle, K. [2 ]
Burks, T. F. [3 ]
Mehta, S. S. [1 ]
机构
[1] Univ Florida, Dept Mech & Aersospace Engn, Shalimar, FL 32579 USA
[2] Univ Florida, Natl Res Council, Shalimar, FL 32579 USA
[3] Univ Florida, Dept Agr & Biol Engn, Gainesville, FL 32611 USA
来源
IFAC PAPERSONLINE | 2019年 / 52卷 / 30期
关键词
Deep learning; Convolutional neural networks; Multi-modal instance segmentation; CLASSIFICATION; RECOGNITION;
D O I
10.1016/j.ifacol.2019.12.499
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The objective of this work is to detect individual fruits and obtain pixel-wise mask for each detected fruit in an image. To this end, we presents a deep learning approach, named Deep Orange, to detection and pixel-wise segmentation of fruits based on the state-of-the-art instance segmentation framework, Mask R-CNN. The presented approach uses multi-modal input data comprising of RGB and HSV images of the scene. The developed framework is evaluated using images obtained from an orange grove in Citra, Florida under natural lighting conditions. The performance of the algorithm is compared using RGB and RGB+HSV images. Our preliminary findings indicate that inclusion of HSV data improves the precision to 0.9753 from 0.8947, when using RGB data alone. The overall F-1 score obtained using RGB+HSV is close to 0.89. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:70 / 75
页数:6
相关论文
共 42 条
[31]   Using Deep Learning for Image-Based Plant Disease Detection [J].
Mohanty, Sharada P. ;
Hughes, David P. ;
Salathe, Marcel .
FRONTIERS IN PLANT SCIENCE, 2016, 7
[32]  
Mortezaei A., 2016, Industry Applications (INDUSCON), 2016 12th IEEE International Conference on, P1
[33]   Fruit recognition from images using deep learning [J].
Muresan, Horea ;
Oltean, Mihai .
ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2018, 10 (01) :26-42
[34]   Deep phenotyping: deep learning for temporal phenotype/genotype classification [J].
Namin, Sarah Taghavi ;
Esmaeilzadeh, Mohammad ;
Najafi, Mohammad ;
Brown, Tim B. ;
Borevitz, Justin O. .
PLANT METHODS, 2018, 14
[35]   Deep machine learning provides state-of-the-art performance in image-based plant phenotyping [J].
Pound, Michael P. ;
Atkinson, Jonathan A. ;
Townsend, Alexandra J. ;
Wilson, Michael H. ;
Griffiths, Marcus ;
Jackson, Aaron S. ;
Bulat, Adrian ;
Tzimiropoulos, Georgios ;
Wells, Darren M. ;
Murchie, Erik H. ;
Pridmore, Tony P. ;
French, Andrew P. .
GIGASCIENCE, 2017, 6 (10)
[36]   Deep Count: Fruit Counting Based on Deep Simulated Learning [J].
Rahnemoonfar, Maryam ;
Sheppard, Clay .
SENSORS, 2017, 17 (04)
[37]   DeepFruits: A Fruit Detection System Using Deep Neural Networks [J].
Sa, Inkyu ;
Ge, Zongyuan ;
Dayoub, Feras ;
Upcroft, Ben ;
Perez, Tristan ;
McCool, Chris .
SENSORS, 2016, 16 (08)
[38]   Cattle Race Classification Using Gray Level Co-occurrence Matrix Convolutional Neural Networks [J].
Santoni, Mayanda Mega ;
Sensuse, Dana Indra ;
Arymurthy, Aniati Murni ;
Fanany, Mohamad Ivan .
INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL INTELLIGENCE (ICCSCI 2015), 2015, 59 :493-502
[39]   Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification [J].
Sladojevic, Srdjan ;
Arsenovic, Marko ;
Anderla, Andras ;
Culibrk, Dubravko ;
Stefanovic, Darko .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2016, 2016
[40]   Image Based Mango Fruit Detection, Localisation and Yield Estimation Using Multiple View Geometry [J].
Stein, Madeleine ;
Bargoti, Suchet ;
Underwood, James .
SENSORS, 2016, 16 (11)