Kharitonov's Theorem and Bezoutians

被引:7
作者
Olshevsky, A
Olshevsky, V [1 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] MIT, Dept Elect & Comp Engn, Cambridge, MA 02139 USA
关键词
Kharitonov theorem; Bezoutian; stability;
D O I
10.1016/j.laa.2004.12.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An elementary proof of the Kharitonov theorem is presented. The proof is based on the concept of a Bezoutian matrix. Generally, exploiting the special structure of such matrices (e.g., Bezoutians, Toeplitz, Hankel or Vandermonde matrices, etc.) can be interesting, e.g., leading to unified approaches in different cases, as well as to further generalizations. Here the concept of the Bezoutian matrix is used to provide a unified derivation of the Kharitonov-like theorems for the continuous-time and discrete-time settings. Finally, the (block) Anderson-Jury Bezoutians are used to propose a possible technique to attack an difficult open problem related to the robust stability in the MIMO case.
引用
收藏
页码:285 / 297
页数:13
相关论文
共 14 条
[1]   GENERALIZED BEZOUTIAN AND SYLVESTER MATRICES IN MULTIVARIABLE LINEAR-CONTROL [J].
ANDERSON, BDO ;
JURY, EI .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (04) :551-556
[2]  
BHATTACHARYYA SP, 1987, ROBUST STABILIZATION
[3]   On the number of roots in an algebraic equation for a circle. [J].
Cohn, A .
MATHEMATISCHE ZEITSCHRIFT, 1922, 14 :110-148
[4]  
Faedo S., 1953, ANN SCUOLA NORM-SCI, V7, P53
[5]   Algebraic equations, locating their roots in a circle or in a semi-plane. [J].
Fujiwara, Matsusaburo .
MATHEMATISCHE ZEITSCHRIFT, 1926, 24 :161-169
[6]  
GOHBERG IC, 1982, MATRIX POLYNOMIALS
[7]  
Hermite C., 1856, Journal fur die Reine und Angewandte Mathematik, V52, P39, DOI [10.1515/crll.1856.52.39, DOI 10.1515/CRLL.1856.52.39]
[8]  
Kharitonov V. L., 1978, Differentsial'nye Uravneniya, V14, P2086
[9]  
Krein M.G., 1981, LINEAR MULTILINEAR A, V10, P265
[10]  
KREIN MG, 1933, RECH MATH MOSCOW, V40, P271