Stochastic wave equations with dissipative damping

被引:29
作者
Barbu, Viorel
Da Prato, Giuseppe
Tubaro, Luciano [1 ]
机构
[1] Univ Trent, Dept Math, I-38100 Trento, Italy
[2] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[3] Univ Cuza, Iasi 700506, Romania
关键词
stochastic wave equations; dissipative damping; white noise; invariant measure;
D O I
10.1016/j.spa.2006.11.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove existence and (in some special case) uniqueness of an invariant measure for the transition semi.-roup associated with the stochastic wave equations with nonlinear dissipative damping. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1001 / 1013
页数:13
相关论文
共 50 条
[41]   Interpolating the stochastic heat and wave equations with time-independent noise: solvability and exact asymptotics [J].
Le Chen ;
Nicholas Eisenberg .
Stochastics and Partial Differential Equations: Analysis and Computations, 2023, 11 :1203-1253
[42]   Asymptotics of the Solutions to Stochastic Wave Equations Driven by a Non-Gaussian Lévy Process [J].
Yiming Jiang ;
Suxin Wang ;
Xingchun Wang .
Acta Mathematica Scientia, 2019, 39 :731-746
[43]   Interpolating the stochastic heat and wave equations with time-independent noise: solvability and exact asymptotics [J].
Chen, Le ;
Eisenberg, Nicholas .
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2023, 11 (03) :1203-1253
[44]   ASYMPTOTICS OF THE SOLUTIONS TO STOCHASTIC WAVE EQUATIONS DRIVEN BY A NON-GAUSSIAN LéVY PROCESS [J].
江一鸣 ;
王苏鑫 ;
王兴春 .
Acta Mathematica Scientia, 2019, 39 (03) :731-746
[45]   The stochastic obstacle problem for the harmonic oscillator with damping [J].
Barbu, Viorel ;
Da Prato, Giuseppe .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 235 (02) :430-448
[46]   Impact of mixed boundary conditions on stochastic equations with noise at the boundary [J].
Fkirine, M. ;
Hadd, S. ;
Rhandi, A. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2025, 32 (02)
[47]   Weak Convergence Rates for Spatial Spectral Galerkin Approximations of Semilinear Stochastic Wave Equations with Multiplicative Noise [J].
Ladislas Jacobe de Naurois ;
Arnulf Jentzen ;
Timo Welti .
Applied Mathematics & Optimization, 2021, 84 :1187-1217
[48]   Weak Convergence Rates for Spatial Spectral Galerkin Approximations of Semilinear Stochastic Wave Equations with Multiplicative Noise [J].
de Naurois, Ladislas Jacobe ;
Jentzen, Arnulf ;
Welti, Timo .
APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 2) :1187-1217
[49]   NONLINEAR STOCHASTIC WAVE EQUATIONS: BLOW-UP OF SECOND MOMENTS IN L2-NORM [J].
Chow, Pao-Liu .
ANNALS OF APPLIED PROBABILITY, 2009, 19 (06) :2039-2046
[50]   KOLMOGOROV EQUATIONS ASSOCIATED TO THE STOCHASTIC TWO DIMENSIONAL EULER EQUATIONS [J].
Flandoli, Franco ;
Luo, Dejun .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (03) :1761-1791