Error correcting codes associated with complex Hadamard matrices

被引:9
作者
Heng, I [1 ]
Cooke, CH [1 ]
机构
[1] Old Dominion Univ, Dept Math, Norfolk, VA 23508 USA
关键词
error correcting codes; complex Hadamard matrix; Hadamard exponent; linear and nonlinear codes; equidistant code words;
D O I
10.1016/S0893-9659(98)00059-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For primes p > 2, the generalized Hadamard matrix H(p,pt) can be expressed as H = chi(A), where the notation means h(ij) = chi(.)(aij). It is shown that the row vectors of A represent a p-ary error correcting code. Depending upon the value of t, either linear or nonlinear codes emerge. Code words are equidistant and have minimum Hamming distance d = (p - l)t. The code can be extended so as to possess N = P(2)t code words of length pt - 1. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:77 / 80
页数:4
相关论文
共 11 条
[1]  
ADAMEK J, 1991, FDN CODING
[2]  
BEDER JH, 1995, RC BOS MEM C STAT DE
[3]  
Butson A. T., 1962, Proc. Amer. Math. Soc., V13, P894, DOI 10.1090/S0002-9939-1962-0142557-0
[4]   RELATIONS AMONG GENERALIZED HADAMARD MATRICES, RELATIVE DIFFERENCE SETS, AND MAXIMAL LENGTH LINEAR RECURRING SEQUENCES [J].
BUTSON, AT .
CANADIAN JOURNAL OF MATHEMATICS, 1963, 15 (01) :42-&
[5]  
COOKE CH, 1997, CMA, V38, P115
[6]  
COOKE CH, 1997, 10 CUMB C GRAPH THEO
[7]   HADAMARD MATRICES AND THEIR APPLICATIONS [J].
HEDAYAT, A ;
WALLIS, WD .
ANNALS OF STATISTICS, 1978, 6 (06) :1184-1238
[8]  
Key J. D., 1992, DESIGNS THEIR CODES
[9]  
MACWILLIAMS FJ, 1996, THEORY ERROR CORRECT
[10]   GENERALIZED HADAMARD MATRICES + ORTHOGONAL ARRAYS OF STRENGTH 2 [J].
SHRIKHANDE, SS .
CANADIAN JOURNAL OF MATHEMATICS, 1964, 16 (04) :736-+