Modeling the deformation textures and microstructural evolutions of a Fe-Mn-C TWIP steel during tensile and shear testing

被引:39
作者
Barbier, D. [1 ]
Favier, V. [2 ]
Bolle, B. [3 ]
机构
[1] ArcelorMittal Res, F-57283 Maizieres Les Metz, France
[2] Arts & Metiers Paris Tech, CNRS, UMR 8006, PIMM, F-75013 Paris, France
[3] Ecole Natl Ingn Metz, CNRS, UMR 7239, LEM3, F-57078 Metz 3, France
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2012年 / 540卷
关键词
TWIP steel; Micromechanical model; Tensile and shear deformation; Texture and microstructure evolutions; STACKING-FAULT ENERGY; GRAIN-ORIENTATION; AUSTENITIC STEEL; STRAIN; BEHAVIOR; MECHANISMS; DEPENDENCE; KINETICS; SINGLE;
D O I
10.1016/j.msea.2012.01.128
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The high manganese austenitic steels with low stacking fault energy (SFE) present outstanding mechanical properties due to the occurrence of two strain mechanisms: dislocation glide and twinning. Both mechanisms are anisotropic. In this paper, we analyzed the effect of monotonous loading path on the texture, the deformation twinning and the stress-strain response of polycrystalline high Mn TWIP steel. Experimental data were compared to predicted results obtained by two polycrystalline models. These two models are based on the same single crystal constitutive equations but differ from the homogenization scheme. The good agreement between experiments and calculations suggest that the texture plays a key role in twinning activity and kinetics with regard to the intergranular stress heterogeneities. Rolling direction simple shear induces single twinning while rolling and transverse direction uniaxial tensions induce multi-twinning leading to lower twin volume fractions due to twin-twin interactions. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:212 / 225
页数:14
相关论文
共 46 条
[1]  
Ahzi S., 1987, THESIS U METZ FRANCE
[2]   A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel [J].
Allain, S ;
Chateau, JP ;
Bouaziz, O .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 387 :143-147
[3]   Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys [J].
Allain, S ;
Chateau, JP ;
Bouaziz, O ;
Migot, S ;
Guelton, N .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 387 :158-162
[4]   Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy fcc alloys that form deformation twins [J].
Asgari, S ;
ElDanaf, E ;
Kalidindi, SR ;
Doherty, RD .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1997, 28 (09) :1781-1795
[5]  
Ashby M.F., 1982, DEFORMATION MECH MAP
[6]  
Barbier D, 2009, CERAM TRANS, V200, P87
[7]   EBSD for analysing the twinning microstructure in fine-grained TWIP steels and its influence on work hardening [J].
Barbier, D. ;
Gey, N. ;
Bozzolo, N. ;
Allain, S. ;
Humbert, M. .
JOURNAL OF MICROSCOPY, 2009, 235 (01) :67-78
[8]   Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions [J].
Barbier, D. ;
Gey, N. ;
Allain, S. ;
Bozzolo, N. ;
Humbert, M. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 500 (1-2) :196-206
[9]   Micromechanical modeling of the elastic-viscoplastic behavior of polycrystalline steels having different microstructures [J].
Berbenni, S ;
Favier, V ;
Lemoine, X ;
Berveiller, AB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 372 (1-2) :128-136
[10]   Texture evolution in equal-channel angular extrusion [J].
Beyerlein, Irene J. ;
Toth, Laszlo S. .
PROGRESS IN MATERIALS SCIENCE, 2009, 54 (04) :427-510