Topological derivatives for networks of elastic strings

被引:3
作者
Leugering, G. [1 ]
Sokolowski, J. [2 ]
机构
[1] Univ Erlangen Nurnberg, Lehrstuhl Angew Math 2, Dept Math, D-91058 Erlangen, Germany
[2] Univ Nancy 1, Math Lab, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2011年 / 91卷 / 12期
关键词
Differential equations on metric graphs; Steklov-Poincare operators on graphs; self-adjoint nodal conditions; topological sensitivities; INVERSE PROBLEM; QUANTUM; OPTIMIZATION; GRAPHS;
D O I
10.1002/zamm.201000067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider linear second order differential equations on metric graphs under given boundary and nodal conditions. We are interested in the problem of changing the topology of the underlying graph in that we replace a multiple node by a subgraph or concentrate a subgraph to a single node. We wish to do so in an optimal fashion. More precisely, given a cost function we may look for its sensitivity with respect to these operations in order to find an optimal topology of the graph. Thus, in essence, we are looking for the topological gradient for linear second order problems on metric graphs. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:926 / 943
页数:18
相关论文
共 28 条
  • [1] Avdonin S, 2008, INVERSE PROBL IMAG, V2, P1
  • [2] On an inverse problem for tree-like networks of elastic strings
    Avdonin, Sergei
    Leugering, Guenter
    Mikhaylov, Victor
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (02): : 136 - 150
  • [3] Belishev M., 2006, J INVERSE ILL-POSE P, V14, P29, DOI 10.1515/156939406776237474
  • [4] Boundary spectral inverse problem on a class of graphs (trees) by the BC method
    Belishev, MI
    [J]. INVERSE PROBLEMS, 2004, 20 (03) : 647 - 672
  • [5] Bernot M., 2007, BRANCHED TRANSPORTAT
  • [6] BUTTAZZO G, 2005, SOME OPTIMIZATION PR
  • [7] Optimal dimensioning of pipe networks with application to gas transmission networks
    DeWolf, D
    Smeers, Y
    [J]. OPERATIONS RESEARCH, 1996, 44 (04) : 596 - 608
  • [8] Architecture of optimal transport networks
    Durand, M
    [J]. PHYSICAL REVIEW E, 2006, 73 (01):
  • [9] EXNER P, 2007, ARXIV07060481
  • [10] Topology optimization of flow networks
    Klarbring, A
    Petersson, J
    Torstenfelt, B
    Karlsson, M
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (35-36) : 3909 - 3932