Facile fabrication of perovskite layers with large grains through a solvent exchange approach

被引:35
作者
Ren, Ying-Ke [1 ]
Shi, Xiao-Qiang [1 ]
Ding, Xi-Hong [1 ]
Zhu, Jun [2 ]
Hayat, Tasawar [3 ]
Alsaedi, Ahmed [3 ]
Li, Zhao-Qian [4 ]
Xu, Xiao-Xiao [4 ]
Yang, Shang-Feng [5 ]
Dai, Song-Yuan [1 ,3 ,4 ]
机构
[1] North China Elect Power Univ, Beijing Key Lab Novel Thin Film Solar Cells, Beijing 102206, Peoples R China
[2] Hefei Univ Technol, Acad Optoelect Technol, Key Lab Special Display Technol,State Key Lab Adv, Natl Engn Lab Special Display Technol,Minist Educ, Hefei 230009, Anhui, Peoples R China
[3] King Abdulaziz Univ, Dept Math, NAAM Res Grp, Fac Sci, Jeddah 21589, Saudi Arabia
[4] Chinese Acad Sci, Hefei Inst Phys Sci, Inst Appl Technol, Key Lab Photovolat & Energy Conservat Mat, Hefei 230031, Anhui, Peoples R China
[5] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
来源
INORGANIC CHEMISTRY FRONTIERS | 2018年 / 5卷 / 02期
基金
中国国家自然科学基金;
关键词
PLANAR CH3NH3PBI3 PEROVSKITE; SOLAR-CELLS; SEQUENTIAL DEPOSITION; EFFICIENT; TRIHALIDE; FILMS; INTERMEDIATE; LENGTHS;
D O I
10.1039/c7qi00685c
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Large-grained perovskite layers with fewer defects are beneficial to minimize carrier recombination at grain boundaries, thus boosting cell performance. Here, we present a facile solvent exchange strategy (SES) to yield large-grained perovskite films with high reproducibility. Upon employing a stoichiometric PbI2 : MAI : DMSO (3 : 2 : 2) precursor solution, we reduced the number of colloidal intermediates (PbI42-) which is correlated with the nucleation of seeds, resulting in a perovskite thin layer with large grain sizes up to 2 mu m. The SES prepared CH3NH3PbI3 devices show significantly reduced grain boundaries corresponding to the decrease of recombination centers, which dramatically boosted the efficiency up to 17.2%.
引用
收藏
页码:348 / 353
页数:6
相关论文
共 32 条
[1]   Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide [J].
Ahn, Namyoung ;
Son, Dae-Yong ;
Jang, In-Hyuk ;
Kang, Seong Min ;
Choi, Mansoo ;
Park, Nam-Gyu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (27) :8696-8699
[2]   Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells [J].
Bi, Cheng ;
Wang, Qi ;
Shao, Yuchuan ;
Yuan, Yongbo ;
Xiao, Zhengguo ;
Huang, Jinsong .
NATURE COMMUNICATIONS, 2015, 6
[3]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+
[4]   Identifying the Molecular Structures of Intermediates for Optimizing the Fabrication of High-Quality Perovskite Films [J].
Cao, Jing ;
Jing, Xiaojing ;
Yan, Juanzhu ;
Hu, Chengyi ;
Chen, Ruihao ;
Yin, Jun ;
Li, Jing ;
Zheng, Nanfeng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (31) :9919-9926
[5]   Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells [J].
Eperon, Giles E. ;
Stranks, Samuel D. ;
Menelaou, Christopher ;
Johnston, Michael B. ;
Herz, Laura M. ;
Snaith, Henry J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (03) :982-988
[6]   Highly Efficient and Stable Perovskite Solar Cells Based on Monolithically Grained CH3NH3PbI3 Film [J].
Fei, Chengbin ;
Li, Bo ;
Zhang, Rong ;
Fu, Haoyu ;
Tian, Jianjun ;
Cao, Guozhong .
ADVANCED ENERGY MATERIALS, 2017, 7 (09)
[7]  
He M., 2017, NAT COMMUN, V8, P10, DOI DOI 10.1038/S41467-017-02237-1
[8]   Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells [J].
Huang, Fuzhi ;
Dkhissi, Yasmina ;
Huang, Wenchao ;
Xiao, Manda ;
Benesperi, Iacopo ;
Rubanov, Sergey ;
Zhu, Ye ;
Lin, Xiongfeng ;
Jiang, Liangcong ;
Zhou, Yecheng ;
Gray-Weale, Angus ;
Etheridge, Joanne ;
McNeill, Christopher R. ;
Caruso, Rachel A. ;
Bach, Udo ;
Spiccia, Leone ;
Cheng, Yi-Bing .
NANO ENERGY, 2014, 10 :10-18
[9]  
Jeon NJ, 2014, NAT MATER, V13, P897, DOI [10.1038/NMAT4014, 10.1038/nmat4014]
[10]   The maximum predicted content of cation vacancies in inorganic and organic-inorganic perovskites: the role of the tolerance factor [J].
Ji, D. H. ;
Wang, S. L. ;
Ge, X. Z. ;
Zhang, Q. Q. ;
Zhang, C. M. ;
Zeng, Z. W. ;
Bai, Y. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (26) :17121-17127