Reducing complexes in multidimensional persistent homology theory

被引:11
作者
Allili, Madjid [1 ]
Kaczynski, Tomasz [2 ]
Landi, Claudia [3 ]
机构
[1] Bishops Univ, Dept Math, Sherbrooke, PQ J1M 1Z7, Canada
[2] Univ Sherbrooke, Dept Math, Sherbrooke, PQ J1K 2R1, Canada
[3] Univ Modena & Reggio Emilia, Dipartimento Sci & Metodi Ingn, Reggio Emilia, Italy
基金
加拿大自然科学与工程研究理事会;
关键词
Multidimensional persistent homology; Discrete Morse theory; Acyclic partial matchings; Matching algorithm; DIGITAL IMAGES; SIZE FUNCTIONS; MORSE-THEORY; DISCRETE; SIMPLIFICATION; COMPUTATION; REDUCTION;
D O I
10.1016/j.jsc.2015.11.020
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Forman's discrete Morse theory appeared to be useful for providing filtration-preserving reductions of complexes in the study of persistent homology. So far, the algorithms computing discrete Morse matchings have only been used for one-dimensional filtrations. This paper is perhaps the first attempt in the direction of extending such algorithms to multidimensional filtrations. An initial framework related to Morse matchings for the multidimensional setting is proposed, and a matching algorithm given by King, Knudson, and Mramor is extended in this direction. The correctness of the algorithm is proved, and its complexity analyzed. The algorithm is used for establishing a reduction of a simplicial complex to a smaller but not necessarily optimal cellular complex. First experiments with filtrations of triangular meshes are presented. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:61 / 75
页数:15
相关论文
共 26 条
[1]  
[Anonymous], P SPIE
[2]   Multidimensional size functions for shape comparison [J].
Biasotti, S. ;
Cerri, A. ;
Frosini, P. ;
Giorgi, D. ;
Landi, C. .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2008, 32 (02) :161-179
[3]   ONE-DIMENSIONAL REDUCTION OF MULTIDIMENSIONAL PERSISTENT HOMOLOGY [J].
Cagliari, Francesca ;
Di Fabio, Barbara ;
Ferri, Massimo .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (08) :3003-3017
[4]  
Carlsson G., 2005, International Journal of Shape Modeling, V11, P149, DOI DOI 10.1145/1057432.1057449
[5]  
Carlsson G., 2007, P 23 ANN S COMP GEOM, P184, DOI [10.1145/1247069.1247105, DOI 10.1145/1247069.1247105]
[6]  
Carlsson G, 2009, LECT NOTES COMPUT SC, V5878, P730, DOI 10.1007/978-3-642-10631-6_74
[7]   Comparison of persistent homologies for vector functions: From continuous to discrete and back [J].
Cavazza, N. ;
Ethier, M. ;
Frosini, P. ;
Kaczynski, T. ;
Landi, C. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (04) :560-573
[8]   Betti numbers in multidimensional persistent homology are stable functions [J].
Cerri, Andrea ;
Di Fabio, Barbara ;
Ferri, Massimo ;
Frosini, Patrizio ;
Landi, Claudia .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (12) :1543-1557
[9]  
Cerri A, 2011, LECT NOTES COMPUT SC, V6658, P1, DOI 10.1007/978-3-642-20844-7_1
[10]   Skeletonization and Partitioning of Digital Images Using Discrete Morse Theory [J].
Delgado-Friedrichs, Olaf ;
Robins, Vanessa ;
Sheppard, Adrian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (03) :654-666