On the Mordell-Weil lattice of y2 = x3 + bx plus t3n+1 in characteristic 3

被引:0
作者
Leterrier, Gauthier [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Dept Math, Stn 8, CH-1015 Lausanne, Switzerland
关键词
Elliptic curves; Function fields; L-functions; Mordell-Weil group; Sphere packings; ELLIPTIC-CURVES; CHARACTERISTIC-2; RANK;
D O I
10.1007/s40993-022-00321-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the elliptic curves given by y(2) = x(3) + bx + t(3n+1) over global function fields of characteristic 3 ; in particular we perform an explicit computation of the L-function by relating it to the zeta function of a certain superelliptic curve u(3) + bu = v(3n+1). In this way, using the Neron-Tate height on the Mordell-Weil group, we obtain lattices in dimension 2.3(n) for every n >= 1, which improve on the currently best known sphere packing densities in dimensions 162 (case n = 4) and 486 (case n = 5). For n = 3, the construction has the same packing density as the best currently known sphere packing in dimension 54, and for n = 1 it has the same density as the lattice E-6 in dimension 6.
引用
收藏
页数:20
相关论文
共 26 条
[1]   Divisibility of zeta functions of curves in a covering [J].
Aubry, Y ;
Perret, M .
ARCHIV DER MATHEMATIK, 2004, 82 (03) :205-213
[2]  
BALL K, 1992, DUKE MATH J, V68, pA217
[3]   The minimum values of positive quadratic forms in six, seven and eight variables [J].
Blichfeldt, HF .
MATHEMATISCHE ZEITSCHRIFT, 1935, 39 :1-15
[4]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[5]   THE AVERAGE RANK OF ELLIPTIC-CURVES .1. [J].
BRUMER, A .
INVENTIONES MATHEMATICAE, 1992, 109 (03) :445-472
[6]  
Conway J H, 1998, SPHERE PACKINGS LATT
[7]   Mordell-Weil lattices in characteristic 2, III: A Mordell-Weil lattice of rank 128 [J].
Elkies, ND .
EXPERIMENTAL MATHEMATICS, 2001, 10 (03) :467-473
[8]   Mordell-Weil lattices in characteristic 2 .2. The Leech lattice as a Mordell-Weil lattice [J].
Elkies, ND .
INVENTIONES MATHEMATICAE, 1997, 128 (01) :1-8
[9]  
Elkies ND., 1994, Int Math Res Notices, V1994, P343
[10]   On a refinement of Craig's lattices [J].
Flores, Andre Luiz ;
Interlando, J. Carmelo ;
da Nobrega Neto, Trajano Pires ;
Dantas Lopes, Jose Othon .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (06) :1440-1442