Anomalous diffusion of a tethered membrane: A Monte Carlo investigation

被引:14
|
作者
Popova, Hristina [1 ]
Milchev, Andrey [1 ]
机构
[1] Bulgarian Acad Sci, Inst Phys Chem, BU-1113 Sofia, Bulgaria
来源
PHYSICAL REVIEW E | 2008年 / 77卷 / 04期
关键词
D O I
10.1103/PhysRevE.77.041906
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using a continuum bead-spring Monte Carlo model, we study the anomalous diffusion dynamics of a self-avoiding tethered membrane by means of extensive computer simulations. We focus on the subdiffusive stochastic motion of the membrane's central node in the regime of flat membranes at temperatures above the membrane folding transition. While at times, larger than the characteristic membrane relaxation time tau(R), the mean-square displacement of the center of mass of the sheet, < R-c(2)>, as well as that of its central node, < R-n(2)>, show the normal Rouse diffusive behavior with a diffusion coefficient DN scaling as D-N alpha N-1 with respect to the number of segments N in the membrane, for short times t <= tau(R) we observe a multiscale dynamics of the central node, < R-n(2)>alpha t(alpha), where the anomalous diffusion exponent alpha changes from alpha approximate to 0.86 to approximate to 0.27, and then to alpha approximate to 0.5, before diffusion turns eventually to normal. By means of simple scaling arguments we show that our main result, alpha approximate to 0.27, can be related to particular mechanisms of membrane dynamics which involve different groups of segments in the membrane sheet. A comparative study involving also linear polymers demonstrates that the diffusion coefficient of self-avoiding tethered membranes, containing N segments, is three times smaller than that of linear polymer chains with the same number of segments.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A Monte Carlo study of a tethered polymer chain in a uniform field
    Avramova, K
    Yamakov, V
    Milchev, A
    MACROMOLECULAR THEORY AND SIMULATIONS, 2000, 9 (08) : 516 - 522
  • [32] Irreversible adsorption of tethered chains at substrates: Monte Carlo study
    Descas, R
    Sommer, JU
    Blumen, A
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (09):
  • [33] TETHERED CHAINS IN CONCAVE VOLUMES - A MONTE-CARLO STUDY
    PROCHAZKA, K
    LIMPOUCHOVA, Z
    COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, 1994, 59 (10) : 2166 - 2189
  • [34] MONTE-CARLO STUDY OF TETHERED CHAINS IN SPHERICAL VOLUMES
    PROCHAZKA, K
    JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (38): : 14108 - 14116
  • [35] Diffusion Monte Carlo in Internal Coordinates
    Petit, Andrew S.
    McCoy, Anne B.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 117 (32): : 7009 - 7018
  • [36] A MONTE-CARLO APPROACH TO DIFFUSION
    HAGERSTRAND, T
    ARCHIVES EUROPEENNES DE SOCIOLOGIE, 1965, 6 (01): : 43 - 67
  • [37] On the mathematical foundations of diffusion Monte Carlo
    Caffarel, Michel
    Del Moral, Pierre
    de Montella, Luc
    JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (01)
  • [38] Particle diffusion Monte Carlo (PDMC)
    Zarezadeh, Zakarya
    Costantini, Giovanni
    MONTE CARLO METHODS AND APPLICATIONS, 2019, 25 (02): : 121 - 130
  • [39] Correlated sampling in diffusion Monte Carlo
    Anderson, James B.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [40] Introduction to the diffusion Monte Carlo method
    Kosztin, I
    Faber, B
    Schulten, K
    AMERICAN JOURNAL OF PHYSICS, 1996, 64 (05) : 633 - 644