Sub-signature operators, η-invariants and a Riemann-Roch theorem for flat vector bundles

被引:22
作者
Zhang, WP [1 ]
机构
[1] Nankai Univ, Nankai Inst Math, Tianjin 300071, Peoples R China
关键词
sub-signature operators; eta-invariants; flat vector bundles; Riemann-Roch;
D O I
10.1142/S0252959904000032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The author presents an extension of the Atiyah-Patodi-Singer invariant for unitary representations [2, 3] to the non-unitary case, as well as to the case where the base manifold admits certain finer structures. In particular, when the base manifold has a fibration structure, a Riemann-Roch theorem for these invariants is established by computing the adiabatic limits of the associated eta-invariants.
引用
收藏
页码:7 / 36
页数:30
相关论文
共 19 条
[1]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .2. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 78 (NOV) :405-432
[2]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .3. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (JAN) :71-99
[3]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .1. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (JAN) :43-69
[4]  
ATIYAH MF, 1971, ANN MATH, V93, P139
[5]  
Berline N., 1992, GRUNDL MATH WISS, V298
[6]  
Bismut J-M., 1992, EXTENSION THEOREM CH
[7]  
Bismut Jean-Michel, 1989, J. Amer. Math. Soc., V2, P33, DOI 10.2307/1990912
[9]   FLAT VECTOR-BUNDLES, DIRECT IMAGES AND HIGHER REAL ANALYTIC-TORSION [J].
BISMUT, JM ;
LOTT, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 8 (02) :291-363
[10]   THE ANALYSIS OF ELLIPTIC FAMILIES .2. DIRAC OPERATORS, ETA-INVARIANTS, AND THE HOLONOMY THEOREM [J].
BISMUT, JM ;
FREED, DS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 107 (01) :103-163