A novel quasi-exactly solvable model with total transmission modes

被引:10
|
作者
Cho, Hing-Tong [1 ]
Ho, Choon-Lin [1 ]
机构
[1] Tamkang Univ, Dept Phys, Taipei, Taiwan
关键词
D O I
10.1088/1751-8113/41/17/172002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this communication we present a novel quasi-exactly solvable model with symmetric inverted potentials which are unbounded from below. The quasi-exactly solvable states are shown to be total transmission (or reflectionless) modes. From these modes even and odd wavefunctions can be constructed which are normalizable and flux-zero. Under the procedure of self-adjoint extension, a discrete spectrum of bound states can be obtained for these inverted potentials and the solvable part of the spectrum is the quasi-exactly solvable states we have discovered.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Additional constraints on quasi-exactly solvable systems
    Klishevich, S. M.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 150 (02) : 203 - 212
  • [22] Generalization of quasi-exactly solvable and isospectral potentials
    P. K. Bera
    J. Datta
    M. M. Panja
    Tapas Sil
    Pramana, 2007, 69 : 337 - 367
  • [23] Quasi-exactly solvable quartic Bose Hamiltonians
    Dolya, SN
    Zaslavskii, OB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (30): : 5955 - 5968
  • [24] Quasi-exactly solvable periodic and random potentials
    Tkachuk, VM
    Voznyak, O
    PHYSICS LETTERS A, 2002, 301 (3-4) : 177 - 183
  • [25] Quasi-exactly solvable models in nonlinear optics
    Alvarez, G
    Finkel, F
    González-López, A
    Rodríguez, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (41): : 8705 - 8713
  • [26] New Quasi-Exactly Solvable Difference Equation
    Sasaki, Ryu
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 3) : 373 - 384
  • [27] Dirac oscillators and quasi-exactly solvable operators
    Brihaye, Y
    Nininahazwe, A
    MODERN PHYSICS LETTERS A, 2005, 20 (25) : 1875 - 1885
  • [28] Superintegrability and quasi-exactly solvable eigenvalue problems
    Kalnins, E. G.
    Miller, W., Jr.
    Pogosyan, G. S.
    PHYSICS OF ATOMIC NUCLEI, 2008, 71 (05) : 925 - 929
  • [29] New quasi-exactly solvable periodic potentials
    Xie, Qiong-Tao
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (28)
  • [30] Generalization of quasi-exactly solvable and isospectral potentials
    Bera, P. K.
    Datta, J.
    Panja, M. M.
    Sil, Tapas
    PRAMANA-JOURNAL OF PHYSICS, 2007, 69 (03): : 337 - 367