Generalized partially linear models with missing covariates

被引:35
作者
Liang, Hua [1 ]
机构
[1] Univ Rochester, Med Ctr, Dept Biostat & Computat Biol, Rochester, NY 14642 USA
关键词
AIDS clinical trial; completely missing at random; local linear; local quasilikelihood; missing at random; nonignorable; penalized quasilikelihood; weighted estimating equation;
D O I
10.1016/j.jmva.2007.05.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we study a semiparametric generalized partially linear model when the covariates are missing at random. We propose combining local linear regression with the local quasilikelihood technique and weighted estimating equation to estimate the parameters and nonparameters when the missing probability is known or unknown. We establish normality of the estimators of the parameter and asymptotic expansion for the estimators of the nonparametric part. We apply the proposed models and methods to a study of the relation between virologic and immunologic responses in AIDS clinical trials, in which virologic response is classified into binary variables. We also give simulation results to illustrate our approach. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:880 / 895
页数:16
相关论文
共 30 条
[1]  
[Anonymous], 1990, GEN ADDITIVE MODEL
[2]   Generalized partially linear single-index models [J].
Carroll, RJ ;
Fan, JQ ;
Gijbels, I ;
Wand, MP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) :477-489
[3]   Bayesian methods for missing covariates in cure rate models [J].
Chen, MH ;
Ibrahim, JG ;
Lipsitz, SR .
LIFETIME DATA ANALYSIS, 2002, 8 (02) :117-146
[4]  
Fan J., 1996, LOCAL POLYNOMIAL MOD
[5]   Virologic and immunologic outcomes after 24 weeks in HIV type 1-infected adolescents receiving highly active antiretroviral therapy [J].
Flynn, PM ;
Rudy, BJ ;
Douglas, SD ;
Lathey, J ;
Spector, SA ;
Martinez, J ;
Silio, M ;
Belzer, M ;
Friedman, L ;
D'Angelo, L ;
McNamara, J ;
Hodge, J ;
Hughes, MD ;
Lindsey, JC .
JOURNAL OF INFECTIOUS DISEASES, 2004, 190 (02) :271-279
[6]   Testing parametric versus semiparametric modeling in generalized linear models [J].
Hardle, W ;
Mammen, E ;
Muller, M .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (444) :1461-1474
[7]   Missing-data methods for generalized linear models: A comparative review [J].
Ibrahim, JG ;
Chen, MH ;
Lipsitz, SR ;
Herring, AH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (469) :332-346
[8]   Using auxiliary data for parameter estimation with non-ignorably missing outcomes [J].
Ibrahim, JG ;
Lipsitz, SR ;
Horton, N .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2001, 50 :361-373
[9]   Monte Carlo EM for missing covariates in parametric regression models [J].
Ibrahim, JG ;
Chen, MH ;
Lipsitz, SR .
BIOMETRICS, 1999, 55 (02) :591-596
[10]   Semiparametric methods for response-selective and missing data problems in regression [J].
Lawless, JF ;
Kalbfleisch, JD ;
Wild, CJ .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 :413-438