ON PROJECTIONS OF SMOOTH AND NODAL PLANE CURVES

被引:1
作者
Burman, Yu. [1 ,2 ]
Lvovski, Serge [3 ]
机构
[1] Natl Res Univ, Higher Sch Econ, Int Lab Representat Theory & Math Phys, Moscow 101000, Russia
[2] Indepdendent Univ Moscow, Moscow 119002, Russia
[3] Natl Res Univ, Higher Sch Econ, AG Lab, Moscow 117312, Russia
关键词
Plane algebraic curve; projection; monodromy; Picard-Lefschetz theory; Chisini conjecture; VARIETIES; SURFACES;
D O I
10.17323/1609-4514-2015-15-1-31-48
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that C subset of P-2 is a general enough nodal plane curve of degree > 2, nu: (C) over cap -> C is its normalization, and pi: C' -> P-1 is a finite morphism simply ramified over the same set of points as a projection pr(p) circle nu: (C) over cap -> P-1 ,where p is an element of P-2\C (if deg C = 3, one should assume in addition that deg pi not equal 4). We prove that the morphism pi is equivalent to such a project ion if and only if it extends to a finite morphism X -> (P-2)* ramified over C*, where X is a smooth surface. As a by-product, we prove the Cinsini conjecture re for mappings ramified over duals to general nodal curves of any degree >= 3 except for duals to smooth cubics; this strengthens one of Victor Kulikov's results.
引用
收藏
页码:31 / 48
页数:18
相关论文
共 18 条
[1]   The complex hyperbolic geometry of the moduli space of cubic surfaces [J].
Allcock, D ;
Carlson, JA ;
Toledo, D .
JOURNAL OF ALGEBRAIC GEOMETRY, 2002, 11 (04) :659-724
[2]  
[Anonymous], 1971, LECT NOTES MATH, DOI DOI 10.1007/BFB0058662.1009
[3]  
[Anonymous], 1966, Inst. Hautes Etudes Sci. Publ. Math., P255
[4]  
Birkenhake C., 2004, GRUNDLEHREN MATHEMAT, V302, DOI [DOI 10.1007/978-3-662-06307-1, 10.1007/978-3-662-06307-1]
[5]  
Deligne P., 1981, LECT NOTES MATH, V842, P1
[6]  
DELIGNE P., 1973, LECT NOTES MATH, V340
[7]  
Dolgachev IV, 2012, CLASSICAL ALGEBRAIC GEOMETRY: A MODERN VIEW, P1, DOI 10.1017/CBO9781139084437
[8]   Cayley-Bacharach theorems and conjectures [J].
Eisenbud, D ;
Green, M ;
Harris, J .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 33 (03) :295-324
[9]   CONNECTEDNESS THEOREM FOR PROJECTIVE VARIETIES, WITH APPLICATIONS TO INTERSECTIONS AND SINGULARITIES OF MAPPINGS [J].
FULTON, W ;
HANSEN, J .
ANNALS OF MATHEMATICS, 1979, 110 (01) :159-166
[10]   An algebro-geometric proof of Witten's conjecture [J].
Kazarian, M. E. ;
Lando, S. K. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 20 (04) :1079-1089