Furstenberg maps for CAT(0) targets of finite telescopic dimension

被引:3
作者
Bader, Uri [1 ]
Duchesne, Bruno [2 ]
Lecureux, Jean [3 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[2] Univ Lorraine, Inst Elie Cartan Lorraine, BP 70239, F-54506 Vandoeuvre Les Nancy, France
[3] Univ Paris 11, Fac Sci Orsay, Dept Math, Batiment 425, F-91405 Orsay, France
关键词
NONPOSITIVELY CURVED SPACES; BOUNDED COHOMOLOGY; POISSON FORMULA; ISOMETRY GROUPS; THEOREM; SUPERRIGIDITY; BOUNDARIES; LATTICES;
D O I
10.1017/etds.2014.147
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider actions of locally compact groups G on certain CAT(0) spaces X by isometries. The CAT(0) spaces we consider have finite dimension at large scale. In case B is a G-boundary, that is a measurable G-space with some amenability and ergodicity properties, we prove the existence of equivariant maps from B to the visual boundary partial derivative X.
引用
收藏
页码:1723 / 1742
页数:20
相关论文
共 29 条
[1]   ARITHMETIC LATTICES AND THE MARGULIS MEASURE [J].
ACAMPO, N ;
BURGER, M .
INVENTIONES MATHEMATICAE, 1994, 116 (1-3) :1-25
[2]   Amenable isometry groups of Hadamard spaces [J].
Adams, S ;
Ballmann, W .
MATHEMATISCHE ANNALEN, 1998, 312 (01) :183-195
[3]   Actions of amenable equivalence relations on CAT(0) fields [J].
Anderegg, Martin ;
Henry, Philippe .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 :21-54
[4]  
[Anonymous], 1991, RESULTS MATH RELATED
[5]  
Bader U., 2013, ARXIV13113696
[6]  
Bader U., 2014, P ICM 2014
[7]   BOUNDARIES, WEYL GROUPS, AND SUPERRIGIDITY [J].
Bader, Uri ;
Furman, Alex .
ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2012, 19 :41-48
[8]  
Bridson M. R., 1999, FUNDAMENTAL PRINCIPL, V319
[9]   Continuous bounded cohomology and applications to rigidity theory [J].
Burger, M ;
Monod, N .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (02) :219-280
[10]   Isometry groups of non-positively curved spaces: structure theory [J].
Caprace, Pierre-Emmanuel ;
Monod, Nicolas .
JOURNAL OF TOPOLOGY, 2009, 2 (04) :661-700