Existence of positive solutions for a class of semilinear and quasilinear elliptic equations with supercritical case

被引:3
|
作者
Gao, Juanjuan [1 ,2 ]
Zhang, Yong [3 ]
Zhao, Peihao [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Henan Univ Sci & Technol, Sch Math & Stat, Luoyang 471003, Peoples R China
[3] Chizhou Univ, Dept Math & Comp Sci, Chizhou 247000, Peoples R China
关键词
Supercritical growth; Embedding theorem; Cylindrical domain; Mountain Pass Theorem; CRITICAL SOBOLEV EXPONENT; STAR-SHAPED DOMAINS; LOCAL MINIMIZERS; RADIAL SOLUTIONS; CONVEX NONLINEARITIES; NONTRIVIAL SOLUTIONS; ASYMPTOTIC-BEHAVIOR; CONTRACTILE DOMAINS; MULTIPLE SOLUTIONS; SMALL HOLES;
D O I
10.1016/j.jmaa.2011.04.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a class of semilinear elliptic Dirichlet problems in a bounded regular domain with cylindrical symmetry involving concave-convex nonlinearities with supercritical growth. Using a new Sobolev embedding theorem and variational method, we show the existence of two positive solutions of the problem. Additionally, we study the quasilinear elliptic equation and obtain a similar result. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:215 / 228
页数:14
相关论文
共 50 条