Perturbation theory about generalized self-consistent field solution

被引:0
作者
Yang, C [1 ]
Kocharian, AN
Chiang, YL
Chen, LY
机构
[1] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA
[2] Tamkang Univ, Dept Phys, Tamsui 251, Taiwan
[3] Chinese Culture Univ, Dept Phys, Taipei 111, Taiwan
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2005年 / 19卷 / 14期
关键词
Hubbard model; perturbation theory; Bethe-ansatz; mean field; random phase approximation;
D O I
10.1142/S021797920502978X
中图分类号
O59 [应用物理学];
学科分类号
摘要
A new efficient converging perturbation technique valid for arbitrary interaction strength U/t and electron concentration n is applied to study strongly correlated electrons within the repulsive Hubbard model. We test the new perturbation expansion theory in terms of interacting quasi-particles about generalized self-consistent field (GSCF) solution in an entire parameter space. The developed perturbation formalism for strong interaction and large perturbation region differs from the traditional theory on the vicinity of non-interacting electrons by incorporating systematically fluctuations of quasi-particles around self-consistent solution. Performed analytical calculations of the ground state properties in the extreme conditions of one dimensionality provide quite reasonable numerical agreement with the Bethe-ansatz results in the intermediate range of U/t and n. The results are compared with the predictions of traditional perturbation theory.
引用
收藏
页码:2225 / 2249
页数:25
相关论文
共 67 条
[21]  
GALITSKII VM, 1958, SOV PHYS JETP-USSR, V7, P104
[22]  
GELLMANN M, 1957, PHYS REV, V106, P364, DOI 10.1103/PhysRev.106.364
[23]   DERIVATION OF THE BRUECKNER MANY-BODY THEORY [J].
GOLDSTONE, J .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1957, 239 (1217) :267-279
[24]  
HANISCH T, 1993, ANN PHYS-LEIPZIG, V2, P381, DOI 10.1002/andp.19935050407
[25]   GROUND-STATE ENERGY OF THE ONE-DIMENSIONAL AND TWO-DIMENSIONAL HUBBARD-MODEL CALCULATED BY THE METHOD OF SINGWI, TOSI, LAND, AND SJOLANDER [J].
HEDAYATI, MR ;
VIGNALE, G .
PHYSICAL REVIEW B, 1989, 40 (13) :9044-9051
[26]   TWO-DIMENSIONAL HUBBARD-MODEL - NUMERICAL-SIMULATION STUDY [J].
HIRSCH, JE .
PHYSICAL REVIEW B, 1985, 31 (07) :4403-4419
[27]  
Khomskii D. I., 1970, Fizika Metallov i Metallovedenie, V29, P31
[28]   PERTURBATION EXPANSION OF LINEAR HUBBARD MODEL [J].
KELIN, DJ ;
SEITZ, WA .
PHYSICAL REVIEW B, 1973, 8 (05) :2236-2247
[29]   Self-consistent and exact studies of pairing correlations and crossover in the one-dimensional attractive Hubbard model [J].
Kocharian, AN ;
Yang, C ;
Chiang, YL .
PHYSICAL REVIEW B, 1999, 59 (11) :7458-7472
[30]   Exact and self-consistent results in one-dimensional repulsive Hubbard model [J].
Kocharian, AN ;
Yang, C ;
Chiang, YL ;
Chou, TY .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (30) :5749-5772