Spray-Coated Multiwalled Carbon Nanotube Composite Electrodes for Thermal Energy Scavenging Electrochemical Cells

被引:38
作者
Holubowitch, Nicolas E. [1 ]
Landon, James [1 ]
Lippert, Cameron A. [1 ]
Craddock, John D. [1 ]
Weisenberger, Matthew C. [1 ]
Liu, Kunlei [1 ]
机构
[1] Univ Kentucky, Ctr Appl Energy Res, 2540 Res Pk Dr, Lexington, KY 40511 USA
关键词
energy scavenging; carbon nanotube; thermoelectrochemical cell; Seebeck coefficient; spray-coating; THERMOELECTRIC FIGURE; POWER; CONDUCTIVITY; PERFORMANCE; KINETICS; MERIT; HEAT;
D O I
10.1021/acsami.6b05083
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Spray-coated multiwalled carbon nanotube/poly(vinylidene fluoride) (MWCNT/PVDF) composite electrodes, scCNTs, with varying CNT compositions (2 to 70 wt %) are presented for use in a simple thermal energy-scavenging cell (thermocell) based on the ferro/ferricyanide redox couple. Their utility for direct thermal-to-electrical energy conversion is explored at various temperature differentials and cell orientations. Performance is compared to that of buckypaper, a 100% CNT sheet material used as a benchmark electrode in thermocell research. The 30 to 70 wt % scCNT composites give the highest power output by electrode area seven times greater than buckypaper, at Delta T = 50 degrees C. CNT utilization is drastically enhanced in our electrodes, reaching 1 W g(CNT)(-1) compared to 0.036 W g(CNT)(-1) for buckypaper. Superior performance of Or spray-coated electrodes is attributed to both wettability with better use of a large portion of electrochemically active CNTs and minimization of ohmic and thermal contact resistances. Even composites with as low as 2 wt % CNTs are Still competitive with prior art. The MWCNT/PVDF composites developed herein are inexpensive, scalable, and serve a general need for CNT electrode optimization in next-generation devices.
引用
收藏
页码:22159 / 22167
页数:9
相关论文
共 45 条
[21]   Growth kinetics of MWCNTs synthesized by a continuous-feed CVD method [J].
Kunadian, Illayathambi ;
Andrews, Rodney ;
Qian, Dali ;
Menguec, M. Pinar .
CARBON, 2009, 47 (02) :384-395
[22]   Impact of Pore Size Characteristics on the Electrosorption Capacity of Carbon Xerogel Electrodes for Capacitive Deionization [J].
Landon, James ;
Gao, Xin ;
Kulengowski, Brandon ;
Neathery, James K. ;
Liu, Kunlei .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (11) :A1861-A1866
[23]   Enhanced thermal energy harvesting performance of a cobalt redox couple in ionic liquid-solvent mixtures [J].
Lazar, Manoj A. ;
Al-Masri, Danah ;
MacFarlane, Douglas R. ;
Pringle, Jennifer M. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (03) :1404-1410
[24]   An electrochemical system for efficiently harvesting low-grade heat energy [J].
Lee, Seok Woo ;
Yang, Yuan ;
Lee, Hyun-Wook ;
Ghasemi, Hadi ;
Kraemer, Daniel ;
Chen, Gang ;
Cui, Yi .
NATURE COMMUNICATIONS, 2014, 5
[25]   Use of waste heat of TIEC as the power source for AMTEC [J].
Lodhi, M. A. K. ;
Mustafa, A. .
JOURNAL OF POWER SOURCES, 2006, 158 (01) :740-746
[26]   Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field [J].
Martin-Gonzalez, Marisol ;
Caballero-Calero, O. ;
Diaz-Chao, P. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 24 :288-305
[27]   Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes [J].
Nugent, JM ;
Santhanam, KSV ;
Rubio, A ;
Ajayan, PM .
NANO LETTERS, 2001, 1 (02) :87-91
[28]   Nanotube Surface Functionalization Effects in Blended Multiwalled Carbon Nanotube/PVDF Composites [J].
O'Bryan, G. ;
Yang, E. L. ;
Zifer, T. ;
Wally, K. ;
Skinner, J. L. ;
Vance, A. L. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2011, 120 (03) :1379-1384
[29]   Surface modification of poly(vinylidene fluoride) film by remote Ar, H2, and O2 plasmas [J].
Park, YW ;
Inagaki, N .
POLYMER, 2003, 44 (05) :1569-1575
[30]   THE POWER CONVERSION EFFICIENCIES OF A THERMOGALVANIC CELL OPERATED IN 3 DIFFERENT ORIENTATIONS [J].
QUICKENDEN, TI ;
MUA, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (11) :3652-3659