[Fe(CN)6] vacancy-boosting oxygen evolution activity of Co-based Prussian blue analogues for hybrid sodium-air battery

被引:44
作者
Kang, Y. [1 ]
Wang, S. [1 ]
Hui, K. S. [2 ]
Li, H-F [1 ]
Liang, F. [3 ]
Wu, X-L [4 ]
Zhang, Q. [5 ]
Zhou, W. [6 ]
Chen, L. [5 ]
Chen, F. [7 ]
Hui, K. N. [1 ]
机构
[1] Univ Macau, Inst Appl Phys & Mat Engn, Minist Educ, Joint Key Lab, Ave Univ, Taipa 999078, Macau, Peoples R China
[2] Univ East Anglia, Fac Sci, Engn, Norwich NR4 7TJ, Norfolk, England
[3] Kunming Univ Sci & Technol, State Key Lab Complex Nonferrous Met Resources Cl, Kunming 650093, Yunnan, Peoples R China
[4] Zhejiang Normal Univ, Coll Geog & Environm Sci, Jinhua 321004, Zhejiang, Peoples R China
[5] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
[6] Xiamen Univ, Dept Mech & Elect Engn, Xiamen 361005, Peoples R China
[7] South China Normal Univ, Sch Phys & Telecommun Engn, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Peoples R China
关键词
Oxygen evolution reaction; Fe(CN)(6)] vacancies; Aqueous sodium-air battery; Surface electronic configuration; D-BAND CENTER; WATER OXIDATION; REDUCTION REACTION; ELECTROCATALYSTS; PLATINUM; CATALYST;
D O I
10.1016/j.mtener.2020.100572
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Prussian blue analogues (PBAs) have emerged as efficient catalysts for oxygen evolution reaction (OER) due to their porous structure with well-dispersed active sites. However, Co-based PBA (Co-PBA) electrocatalysts are characterized by moderate OER kinetics. In this study, we developed a facile high-yield strategy to fabricate defective Co-PBA (D-Co-PBA) with [Fe(CN)(6)] vacancies and exposed Co (III) active sites by post-oxidation treatment of the pristine Co-PBA with aqueous H2O2. Rietveld refinement results show that the lattice parameter (a) and unit-cell volume (V) of D-Co-PBA are smaller than those of the pristine Co-PBA, thereby confirming the generation of [Fe(CN)(6)] vacancies. Density functional theory calculations reveal that the [Fe(CN)(6)] vacancy can effectively regulate the electronic structure of D-CoPBA; this condition reduces the reaction barrier of the rate-determining step toward OER. In OER, the DCo-PBA catalyst achieves a lower overpotential of 400 mV at a current density of 10 mA cm(2), which is superior to that of Ir/C (430 mV) and Co-PBA (450 mV). A hybrid sodium-air battery assembled with Pt/C and D-Co-PBA catalysts displays a discharge voltage of 2.75 V, an ultralow charging-discharging gap of 0.15 V, and a round-trip efficiency of 94.83% on the 1000th cycle at the current density of 0.01 mA cm(-2). This study is highly promising for large-scale production of affordable and effective PBA-based materials with desirable OER activity for metal-air batteries and water-alkali electrolyzers, thus helping achieve the goal of sustainability. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 51 条
[1]   Theoretical Evidence behind Bifunctional Catalytic Activity in Pristine and Functionalized Al2C Monolayers [J].
Almeida, Roseley ;
Banerjee, Amitava ;
Chakraborty, Sudip ;
Almeida, Jailton ;
Ahuja, Rajeev .
CHEMPHYSCHEM, 2018, 19 (01) :148-152
[2]   Effect of the d-Band Center on the Oxygen Reduction Reaction Activity of Electrochemically Dealloyed Ordered Intermetallic Platinum-Lead (PtPb) Nanoparticles Supported on TiO2-Deposited Cup-Stacked Carbon Nanotubes [J].
Ando, Fuma ;
Tanabe, Toyokazu ;
Gunji, Takao ;
Kaneko, Shingo ;
Takeda, Tsuyoshi ;
Ohsaka, Takeo ;
Matsumoto, Futoshi .
ACS APPLIED NANO MATERIALS, 2018, 1 (06) :2844-2850
[3]   Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water [J].
Bajdich, Michal ;
Garcia-Mota, Monica ;
Vojvodic, Aleksandra ;
Norskov, Jens K. ;
Bell, Alexis T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (36) :13521-13530
[4]   Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution [J].
Bergmann, Arno ;
Martinez-Moreno, Elias ;
Teschner, Detre ;
Chernev, Petko ;
Gliech, Manuel ;
de Araujo, Jorge Ferreira ;
Reier, Tobias ;
Dau, Holger ;
Strasser, Peter .
NATURE COMMUNICATIONS, 2015, 6
[5]   Synthesis and Characterization of Nanostructured Cobalt Hexacyanoferrate [J].
Berrettoni, Mario ;
Giorgetti, Marco ;
Zamponi, Silvia ;
Conti, Paolo ;
Ranganathan, David ;
Zanotto, Antonio ;
Saladino, Maria Luisa ;
Caponetti, Eugenio .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (14) :6401-6407
[6]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[7]   Atomically Dispersed Iron-Nitrogen Species as Electrocatalysts for Bifunctional Oxygen Evolution and Reduction Reactions [J].
Chen, Pengzuo ;
Zhou, Tianpei ;
Xing, Lili ;
Xu, Kun ;
Tong, Yun ;
Xie, Hui ;
Zhang, Lidong ;
Yan, Wensheng ;
Chu, Wangsheng ;
Wu, Changzheng ;
Xie, Yi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (02) :610-614
[8]   Ultrathin Prussian blue analogue nanosheet arrays with open bimetal centers for efficient overall water splitting [J].
Chen, Ziliang ;
Fei, Ben ;
Hou, Meiling ;
Yan, Xiaoxiao ;
Chen, Mao ;
Qing, Huilin ;
Wu, Renbing .
NANO ENERGY, 2020, 68
[9]   The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis [J].
Dau, Holger ;
Limberg, Christian ;
Reier, Tobias ;
Risch, Marcel ;
Roggan, Stefan ;
Strasser, Peter .
CHEMCATCHEM, 2010, 2 (07) :724-761
[10]   Metal hexacyanoferrates: Electrosynthesis, in situ characterization, and applications [J].
de Tacconi, NR ;
Rajeshwar, K ;
Lezna, RO .
CHEMISTRY OF MATERIALS, 2003, 15 (16) :3046-3062