Sparse domination implies vector-valued sparse domination

被引:4
作者
Lorist, Emiel [1 ]
Nieraeth, Zoe [2 ]
机构
[1] Delft Univ Technol, Delft Inst Appl Math, POB 5031, NL-2600 GA Delft, Netherlands
[2] Karlsruher Inst Technol, Fak Math, Inst Anal, Englerstr 2, D-76131 Karlsruhe, Germany
关键词
Sparse domination; Multilinear; UMD; Muckenhoupt weights; Banach function space; Bilinear Hilbert transform; MULTILINEAR MAXIMAL FUNCTIONS; SINGULAR-INTEGRALS; CALDERON; EXTRAPOLATION; OPERATORS; SPACES;
D O I
10.1007/s00209-021-02943-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that scalar-valued sparse domination of a multilinear operator implies vector-valued sparse domination for tuples of quasi-Banach function spaces, for whichwe introduce amultilinear analogue of the UMDcondition. This condition is characterized by the boundedness of the multisublinear Hardy-Littlewood maximal operator and goes beyond examples in which a UMD condition is assumed on each individual space and includes e.g. iterated Lebesgue, Lorentz, and Orlicz spaces. Our method allows us to obtain sharp vector-valued weighted bounds directly from scalar-valued sparse domination, without the use of a Rubio de Francia type extrapolation result. We apply our result to obtain new vector-valued bounds for multilinear Calderon-Zygmund operators as well as recover the old ones with a new sharp weighted bound. Moreover, in the Banach function space setting we improve upon recent vector-valued bounds for the bilinear Hilbert transform.
引用
收藏
页码:1107 / 1141
页数:35
相关论文
共 47 条
  • [1] The bilinear Hilbert transform in UMD spaces
    Amenta, Alex
    Uraltsev, Gennady
    [J]. MATHEMATISCHE ANNALEN, 2020, 378 (3-4) : 1129 - 1221
  • [2] RESCALED EXTRAPOLATION FOR VECTOR-VALUED FUNCTIONS
    Amenta, Alex
    Lorist, Emiel
    Veraar, Mark
    [J]. PUBLICACIONS MATEMATIQUES, 2019, 63 (01) : 155 - 182
  • [3] Sparse domination via the helicoidal method
    Benea, Cristina
    Muscalu, Camil
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2021, 37 (06) : 2037 - 2118
  • [4] Bennett C., 1988, Interpolation of Operators, Pure and Applied Mathematics, V129
  • [5] EXTENSION OF A RESULT OF BENEDEK, CALDERON AND PANZONE
    BOURGAIN, J
    [J]. ARKIV FOR MATEMATIK, 1984, 22 (01): : 91 - 95
  • [6] SOME REMARKS ON BANACH-SPACES IN WHICH MARTINGALE DIFFERENCE-SEQUENCES ARE UNCONDITIONAL
    BOURGAIN, J
    [J]. ARKIV FOR MATEMATIK, 1983, 21 (02): : 163 - 168
  • [7] Burkholder D. L., 1983, WADSWORTH MATH SER, VI, P270
  • [8] Calderon A.-P., 1964, STUDIA MATH, V24, P113, DOI [10.4064/sm-24-2-113-190, DOI 10.4064/SM-24-2-113-190]
  • [9] Canto J, 2021, ANN SCUOLA NORM-SCI, V22, P1131
  • [10] A SPARSE DOMINATION PRINCIPLE FOR ROUGH SINGULAR INTEGRALS
    Conde-Alonso, Jose M.
    Culiuc, Amalia
    Di Plinio, Francesco
    Ou, Yumeng
    [J]. ANALYSIS & PDE, 2017, 10 (05): : 1255 - 1284