Global bifurcation theory for periodic traveling interfacial gravity-capillary waves

被引:19
作者
Ambrose, David M. [1 ]
Strauss, Walter A. [2 ]
Wright, J. Douglas [1 ]
机构
[1] Drexel Univ, Dept Math, Philadelphia, PA 19104 USA
[2] Brown Univ, Dept Math, Providence, RI 02912 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2016年 / 33卷 / 04期
基金
美国国家科学基金会;
关键词
Global bifurcation; Surface tension; Traveling wave; Interfacial flow; Water wave; VORTEX SHEETS; SOLITARY WAVES; WELL-POSEDNESS; WATER-WAVES; MOTION;
D O I
10.1016/j.anihpc.2015.03.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the global bifurcation problem for spatially periodic traveling waves for two-dimensional gravity-capillary vortex sheets. The two fluids have arbitrary constant, non-negative densities (not both zero), the gravity parameter can be positive, negative, or zero, and the surface tension parameter is positive. Thus, included in the parameter set are the cases of pure capillary water waves and gravity-capillary water waves. Our choice of coordinates allows for the possibility that the fluid interface is not a graph over the horizontal. We use a technical reformulation which converts the traveling wave equations into a system of the form "identity plus compact." Rabinowitz' global bifurcation theorem is applied and the final conclusion is the existence of either a closed loop of solutions, or an unbounded set of nontrivial traveling wave solutions which contains waves which may move arbitrarily fast, become arbitrarily long, form singularities in the vorticity or curvature, or whose interfaces self-intersect. (C) 2015 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1081 / 1101
页数:21
相关论文
共 31 条
[1]   Traveling waves from the arclength parameterization: Vortex sheets with surface tension [J].
Akers, Benjamin ;
Ambrose, David M. ;
Wright, J. Douglas .
INTERFACES AND FREE BOUNDARIES, 2013, 15 (03) :359-380
[2]   Gravity perturbed Crapper waves [J].
Akers, Benjamin F. ;
Ambrose, David M. ;
Wright, J. Douglas .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2161)
[3]  
Ambrose DM, 2007, COMMUN MATH SCI, V5, P391
[4]   Well-posedness of vortex sheets with surface tension [J].
Ambrose, DM .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (01) :211-244
[5]   A GLOBAL THEORY OF INTERNAL SOLITARY WAVES IN 2-FLUID SYSTEMS [J].
AMICK, CJ ;
TURNER, REL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 298 (02) :431-484
[6]   SMALL INTERNAL WAVES IN 2-FLUID SYSTEMS [J].
AMICK, CJ ;
TURNER, REL .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1989, 108 (02) :111-139
[7]  
[Anonymous], PREPRINT
[8]  
[Anonymous], PREPRINT
[9]  
[Anonymous], ARXIV14084428
[10]  
[Anonymous], CAMB MONOGR MECH APP