Cascaded collimator for atomic beams traveling in planar silicon devices

被引:20
作者
Li, Chao [1 ]
Chai, Xiao [1 ]
Wei, Bochao [1 ]
Yang, Jeremy [2 ]
Daruwalla, Anosh [2 ]
Ayazi, Farrokh [2 ]
Raman, C. [1 ]
机构
[1] Georgia Inst Technol, Sch Phys, 837 State St, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Elect & Comp Engn, 777 Atlantic Dr NW, Atlanta, GA 30332 USA
关键词
ULTRACOLD ATOMS; QUANTUM; INTERFEROMETER;
D O I
10.1038/s41467-019-09647-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Micro- and increasingly, nano-fabrication have enabled the miniaturization of atomic devices, from vapor cells to atom chips for Bose-Einstein condensation. Here we present micro-fabricated planar devices for thermal atomic beams. Etched microchannels were used to create highly collimated, continuous rubidium atom beams traveling parallel to a silicon wafer surface. Precise, lithographic definition of the guiding channels allowed for shaping and tailoring the velocity distributions in ways not possible using conventional machining. Multiple miniature beams with individually prescribed geometries were created, including collimated, focusing and diverging outputs. A "cascaded" collimator was realized with 40 times greater purity than conventional collimators. These localized, miniature atom beam sources can be a valuable resource for a number of quantum technologies, including atom interferometers, clocks, Rydberg atoms, and hybrid atom-nanophotonic systems, as well as enabling controlled studies of atom-surface interactions at the nanometer scale.
引用
收藏
页数:8
相关论文
共 43 条
[11]  
Jöckel A, 2015, NAT NANOTECHNOL, V10, P55, DOI [10.1038/NNANO.2014.278, 10.1038/nnano.2014.278]
[12]  
Juffmann T, 2012, NAT NANOTECHNOL, V7, P296, DOI [10.1038/NNANO.2012.34, 10.1038/nnano.2012.34]
[13]   A low-power reversible alkali atom source [J].
Kang, Songbai ;
Mott, Russell P. ;
Gilmore, Kevin A. ;
Sorenson, Logan D. ;
Rakher, Matthew T. ;
Donley, Elizabeth A. ;
Kitching, John ;
Roper, Christopher S. .
APPLIED PHYSICS LETTERS, 2017, 110 (24)
[14]   Strong Coupling between a Trapped Single Atom and an All-Fiber Cavity [J].
Kato, Shinya ;
Aoki, Takao .
PHYSICAL REVIEW LETTERS, 2015, 115 (09)
[15]   Fifteen years of coldmatter on the atom chip: promise, realizations, and prospects [J].
Keil, Mark ;
Amit, Omer ;
Zhou, Shuyu ;
Groswasser, David ;
Japha, Yonathan ;
Folman, Ron .
JOURNAL OF MODERN OPTICS, 2016, 63 (18) :1840-1885
[16]   AN INTERFEROMETER FOR ATOMS [J].
KEITH, DW ;
EKSTROM, CR ;
TURCHETTE, QA ;
PRITCHARD, DE .
PHYSICAL REVIEW LETTERS, 1991, 66 (21) :2693-2696
[17]   Introduction to MOLFLOW plus : New graphical processing unit-based Monte Carlo code for simulating molecular flows and for calculating angular coefficients in the compute unified device architecture environment [J].
Kersevan, R. ;
Pons, J. -L. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2009, 27 (04) :1017-1023
[18]  
Kersevan R, 1991, MOLFLOW PACKAGE MONT
[19]   Chip-scale atomic devices [J].
Kitching, John .
APPLIED PHYSICS REVIEWS, 2018, 5 (03)
[20]   Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells [J].
Kuebler, H. ;
Shaffer, J. P. ;
Baluktsian, T. ;
Loew, R. ;
Pfau, T. .
NATURE PHOTONICS, 2010, 4 (02) :112-116