Cascaded collimator for atomic beams traveling in planar silicon devices

被引:20
作者
Li, Chao [1 ]
Chai, Xiao [1 ]
Wei, Bochao [1 ]
Yang, Jeremy [2 ]
Daruwalla, Anosh [2 ]
Ayazi, Farrokh [2 ]
Raman, C. [1 ]
机构
[1] Georgia Inst Technol, Sch Phys, 837 State St, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Elect & Comp Engn, 777 Atlantic Dr NW, Atlanta, GA 30332 USA
关键词
ULTRACOLD ATOMS; QUANTUM; INTERFEROMETER;
D O I
10.1038/s41467-019-09647-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Micro- and increasingly, nano-fabrication have enabled the miniaturization of atomic devices, from vapor cells to atom chips for Bose-Einstein condensation. Here we present micro-fabricated planar devices for thermal atomic beams. Etched microchannels were used to create highly collimated, continuous rubidium atom beams traveling parallel to a silicon wafer surface. Precise, lithographic definition of the guiding channels allowed for shaping and tailoring the velocity distributions in ways not possible using conventional machining. Multiple miniature beams with individually prescribed geometries were created, including collimated, focusing and diverging outputs. A "cascaded" collimator was realized with 40 times greater purity than conventional collimators. These localized, miniature atom beam sources can be a valuable resource for a number of quantum technologies, including atom interferometers, clocks, Rydberg atoms, and hybrid atom-nanophotonic systems, as well as enabling controlled studies of atom-surface interactions at the nanometer scale.
引用
收藏
页数:8
相关论文
共 43 条
[1]   VELOCITY DISTRIBUTION AND ANGULAR-DISTRIBUTION OF MOLECULAR-BEAMS FROM MULTICHANNEL ARRAYS [J].
BEIJERINCK, HCW ;
VERSTER, NF .
JOURNAL OF APPLIED PHYSICS, 1975, 46 (05) :2083-2091
[2]   A cavity-QED scheme for cluster-state quantum computing using crossed atomic beams [J].
Blythe, P. J. ;
Varcoe, B. T. H. .
NEW JOURNAL OF PHYSICS, 2006, 8
[3]  
Brand C, 2015, NAT NANOTECHNOL, V10, P845, DOI [10.1038/nnano.2015.179, 10.1038/NNANO.2015.179]
[4]   Trapping atoms using nanoscale quantum vacuum forces [J].
Chang, D. E. ;
Sinha, K. ;
Taylor, J. M. ;
Kimble, H. J. .
NATURE COMMUNICATIONS, 2014, 5
[5]  
Gierling M, 2011, NAT NANOTECHNOL, V6, P446, DOI [10.1038/nnano.2011.80, 10.1038/NNANO.2011.80]
[6]   MOLECULAR BEAM FORMATION BY LONG PARALLEL TUBES [J].
GIORDMAINE, JA ;
WANG, TC .
JOURNAL OF APPLIED PHYSICS, 1960, 31 (03) :463-471
[7]   Demonstration of a State-Insensitive, Compensated Nanofiber Trap [J].
Goban, A. ;
Choi, K. S. ;
Alton, D. J. ;
Ding, D. ;
Lacroute, C. ;
Pototschnig, M. ;
Thiele, T. ;
Stern, N. P. ;
Kimble, H. J. .
PHYSICAL REVIEW LETTERS, 2012, 109 (03)
[8]   Precision rotation measurements with an atom interferometer gyroscope [J].
Gustavson, TL ;
Bouyer, P ;
Kasevich, MA .
PHYSICAL REVIEW LETTERS, 1997, 78 (11) :2046-2049
[9]   Atom-atom interactions around the band edge of a photonic crystal waveguide [J].
Hood, Jonathan D. ;
Goban, Akihisa ;
Asenjo-Garcia, Ana ;
Lu, Mingwu ;
Yu, Su-Peng ;
Chang, Darrick E. ;
Kimble, H. J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (38) :10507-10512
[10]   Optical hyperpolarization and NMR detection of 129Xe on a microfluidic chip [J].
Jimenez-Martinez, Ricardo ;
Kennedy, Daniel J. ;
Rosenbluh, Michael ;
Donley, Elizabeth A. ;
Knappe, Svenja ;
Seltzer, Scott J. ;
Ring, Hattie L. ;
Bajaj, Vikram S. ;
Kitching, John .
NATURE COMMUNICATIONS, 2014, 5