Long-range percolation mixing time

被引:14
作者
Benjamini, Itai [1 ]
Berger, Noam [2 ]
Yadin, Ariel [1 ]
机构
[1] Weizmann Inst Sci, IL-76100 Rehovot, Israel
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
D O I
10.1017/S0963548308008948
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We provide an estimate, sharp up to poly-logarithmic factors, of the asymptotic almost sure mixing time of the graph created by long-range percolation on the cycle of length N (Z/NZ). While it is known that the asymptotic almost sure diameter drops from linear to poly-logarithmic as the exponent s decreases below 2 [4, 9], the asymptotic almost sure mixing time drops from N(2) only to N(s-1) (up to poly-logarithmic factors).
引用
收藏
页码:487 / 494
页数:8
相关论文
共 17 条
[1]  
Alon N., 2004, The probabilistic method
[2]  
Alon N., 1997, COMBINATORICS PROBAB, V6, P145, DOI DOI 10.1017/S096354839700299X
[3]  
[Anonymous], REVERSIBLE MAR UNPUB
[4]   On the mixing time of a simple random walk on the super critical percolation cluster [J].
Benjamini, I ;
Mossel, E .
PROBABILITY THEORY AND RELATED FIELDS, 2003, 125 (03) :408-420
[5]   The diameter of long-range percolation clusters on finite cycles [J].
Benjamini, I ;
Berger, N .
RANDOM STRUCTURES & ALGORITHMS, 2001, 19 (02) :102-111
[6]   Geometry of the uniform spanning forest: Transitions in dimensions 4, 8, 12, ... [J].
Benjamini, I ;
Kesten, H ;
Peres, Y ;
Schramm, O .
ANNALS OF MATHEMATICS, 2004, 160 (02) :465-491
[7]  
Benjamini I, 2001, ANN PROBAB, V29, P1
[8]  
BENJAMINI I, 2006, ARXIVMATHPR0610459
[9]   On the scaling of the chemical distance in long-range percolation models [J].
Biskup, M .
ANNALS OF PROBABILITY, 2004, 32 (04) :2938-2977
[10]  
BISKUP M, GRAPH DIAMETER LONG