Quantile regression when the covariates are functions

被引:102
作者
Cardot, H [1 ]
Crambes, C
Sarda, P
机构
[1] INRA Toulouse, F-31326 Castanet Tolosan, France
[2] Univ Toulouse 3, Lab Stat & Probabil, UMR C5583, F-31062 Toulouse, France
[3] Univ Toulouse le Mirail, GRIMM, EA 3686, F-31058 Toulouse, France
关键词
functional data analysis; conditional quantiles; B-spline functions; roughness penalty;
D O I
10.1080/10485250500303015
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article deals with a linear model of regression on quantiles when the explanatory variable takes values in some functional space and the response is scalar. We propose a spline estimator of the functional coefficient that minimizes a penalized L-1 type criterion. Then, we study the asymptotic behavior of this estimator. The penalization is of primary importance to get existence and convergence.
引用
收藏
页码:841 / 856
页数:16
相关论文
共 27 条
[1]  
[Anonymous], 1997, SPRINGER SERIES STAT
[2]   ASYMPTOTIC THEORY OF LEAST ABSOLUTE ERROR REGRESSION [J].
BASSETT, G ;
KOENKER, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1978, 73 (363) :618-622
[3]   PRINCIPAL COMPONENTS-ANALYSIS OF SAMPLED FUNCTIONS [J].
BESSE, P ;
RAMSAY, JO .
PSYCHOMETRIKA, 1986, 51 (02) :285-311
[4]   KERNEL AND NEAREST-NEIGHBOR ESTIMATION OF A CONDITIONAL QUANTILE [J].
BHATTACHARYA, PK ;
GANGOPADHYAY, AK .
ANNALS OF STATISTICS, 1990, 18 (03) :1400-1415
[5]  
Bosq D., 2012, Linear Processes in Function Space: Theory and Applications, V149
[6]   Functional linear model [J].
Cardot, H ;
Ferraty, F ;
Sarda, P .
STATISTICS & PROBABILITY LETTERS, 1999, 45 (01) :11-22
[7]  
Cardot H, 2003, STAT SINICA, V13, P571
[8]  
Cardot H, 2004, COMPST 2004 P, P769
[9]   ASYMPTOTIC THEORY FOR THE PRINCIPAL COMPONENT ANALYSIS OF A VECTOR RANDOM FUNCTION - SOME APPLICATIONS TO STATISTICAL-INFERENCE [J].
DAUXOIS, J ;
POUSSE, A ;
ROMAIN, Y .
JOURNAL OF MULTIVARIATE ANALYSIS, 1982, 12 (01) :136-154
[10]  
DAUXOIS J, 1976, THESIS U SABATIER TO