Development of a deep learning-based quantitative structure-activity relationship model to identify potential inhibitors against the 3C-like protease of SARS-CoV-2

被引:3
作者
Kumari, Madhulata [1 ]
Subbarao, Naidu [2 ]
机构
[1] Amity Univ Rajasthan, Amity Inst Biotechnol, Jaipur 303002, Rajasthan, India
[2] Jawaharlal Nehru Univ, Sch Computat & Integrat Sci, New Delhi, India
关键词
3CLpro; convolutional neural network; COVID-19; dynamic cross-correlation matrices; deep learning; free energy landscape; principal component analysis; QSAR; SARS-CoV; SARS-CoV-2; ACCURATE DOCKING; CORONAVIRUS; SIMULATION; PREDICTION; REGRESSION; DATABASE; GLIDE; TOOL;
D O I
10.4155/fmc-2021-0063
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Background: In the recent COVID-19 pandemic, SARS-CoV-2 infection spread worldwide. The 3C-like protease (3CLpro) is a promising drug target for SARS-CoV-2. Results: We constructed a deep learning-based convolutional neural network-quantitative structure-activity relationship (CNN-QSAR) model and deployed it on various databases to predict the biological activity of 3CLpro inhibitors. Subsequently, molecular docking analysis, molecular dynamics simulations and binding free energy calculations were performed to validate the predicted inhibitory activity against 3CLpro of SARS-CoV-2. The model showed mean squared error = 0.114, mean absolute error = 0.24 and predicted R-2 = 0.84 for the test dataset. Diosmin showed good binding affinity and stability over the course of the simulations. Conclusion: The results suggest that the proposed CNN-QSAR model can be an efficient method for hit prediction and a new way to identify hit compounds against 3CLpro of SARS-CoV-2.
引用
收藏
页码:1541 / 1559
页数:19
相关论文
共 59 条
[11]  
Demiriz A., 2001, COMP SCI STAT P 33 S
[12]  
DrugBank Online, DRUGBANK REL VERS 5
[13]  
Esposito Emilio Xavier, 2004, Methods Mol Biol, V275, P131
[14]   A SMOOTH PARTICLE MESH EWALD METHOD [J].
ESSMANN, U ;
PERERA, L ;
BERKOWITZ, ML ;
DARDEN, T ;
LEE, H ;
PEDERSEN, LG .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (19) :8577-8593
[15]   Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy [J].
Friesner, RA ;
Banks, JL ;
Murphy, RB ;
Halgren, TA ;
Klicic, JJ ;
Mainz, DT ;
Repasky, MP ;
Knoll, EH ;
Shelley, M ;
Perry, JK ;
Shaw, DE ;
Francis, P ;
Shenkin, PS .
JOURNAL OF MEDICINAL CHEMISTRY, 2004, 47 (07) :1739-1749
[16]   6 Deep Learning in Drug Discovery [J].
Gawehn, Erik ;
Hiss, Jan A. ;
Schneider, Gisbert .
MOLECULAR INFORMATICS, 2016, 35 (01) :3-14
[17]   Neural network and deep-learning algorithms used in QSAR studies: merits and drawbacks [J].
Ghasemi, Fahimeh ;
Mehridehnavi, Alireza ;
Perez-Garrido, Alfonso ;
Perez-Sanchez, Horacio .
DRUG DISCOVERY TODAY, 2018, 23 (10) :1784-1790
[18]   Recent advances in convolutional neural networks [J].
Gu, Jiuxiang ;
Wang, Zhenhua ;
Kuen, Jason ;
Ma, Lianyang ;
Shahroudy, Amir ;
Shuai, Bing ;
Liu, Ting ;
Wang, Xingxing ;
Wang, Gang ;
Cai, Jianfei ;
Chen, Tsuhan .
PATTERN RECOGNITION, 2018, 77 :354-377
[19]   Secondary metabolites from spice and herbs as potential multitarget inhibitors of SARS-CoV-2 proteins [J].
Gupta, Saurabh ;
Singh, Vishal ;
Varadwaj, Pritish Kumar ;
Chakravartty, Navajeet ;
Katta, A. V. S. Krishna Mohan ;
Lekkala, Sivarama Prasad ;
Thomas, George ;
Narasimhan, Srinivasan ;
Reddy, Arjula R. ;
Reddy Lachagari, V. B. .
JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (05) :2264-2283
[20]   Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening [J].
Halgren, TA ;
Murphy, RB ;
Friesner, RA ;
Beard, HS ;
Frye, LL ;
Pollard, WT ;
Banks, JL .
JOURNAL OF MEDICINAL CHEMISTRY, 2004, 47 (07) :1750-1759