Dark soliton collisions for a fourth-order variable-coefficient nonlinear Schrodinger equation in an inhomogeneous Heisenberg ferromagnetic spin chain or alpha helical protein

被引:30
|
作者
Xie, Xi-Yang [1 ,2 ]
Tian, Bo [1 ,2 ]
Chai, Jun [1 ,2 ]
Wu, Xiao-Yu [1 ,2 ]
Jiang, Yan [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Heisenberg ferromagnetic spin chain; Alpha helical protein chain; Fourth-order variable-coefficient nonlinear Schrodinger equation; Hirota method; Dark soliton collisions; BILINEAR-FORMS; INTEGRABILITY; FLUID;
D O I
10.1007/s11071-016-2876-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Under investigation in this paper is a fourth-order variable-coefficient nonlinear Schrodinger equation, which can describe an inhomogeneous one-dimensional anisotropic Heisenberg ferromagnetic spin chain or alpha helical protein. With the aid of the Hirota method and symbolic computation, bilinear forms, dark one-and two-soliton solutions are obtained. Influences of the variable coefficients on the dark one and two solitons are graphically shown and discussed. Amplitude and shape of the dark one soliton keep invariant during the propagation when the variable coefficients are chosen as the constants. With the variable coefficients being the functions, amplitude of the dark soliton keeps unchanged during the propagation, but direction of the soliton curves. Head-on and overtaking collisions between the dark two solitons are displayed with the variable coefficients chosen as the constants, and it is shown that the shapes of the two solitons do not change during the collision. When we choose the variable coefficients as the functions, directions of the two solitons change and elastic collisions occur between the two solitons.
引用
收藏
页码:131 / 135
页数:5
相关论文
共 27 条
  • [21] Bilinear forms, modulational instability and dark solitons for a fifth-order variable-coefficient nonlinear Schrodinger equation in an inhomogeneous optical fiber
    Huang, Qian-Min
    Gao, Yi-Tian
    Hu, Lei
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 352 : 270 - 278
  • [22] Soliton interaction for a variable-coefficient higher-order nonlinear Schrodinger equation in a dispersion-decreasing fiber
    Huang, Zhi-Ruo
    Wang, Yun-Po
    Jia, Hui-Xian
    Liu, Ying-Fang
    OPTICS AND LASER TECHNOLOGY, 2018, 103 : 151 - 154
  • [23] Breathers and rogue waves of the fifth-order nonlinear Schrodinger equation in the Heisenberg ferromagnetic spin chain
    Sun, Wen-Rong
    Tian, Bo
    Zhen, Hui-Ling
    Sun, Ya
    NONLINEAR DYNAMICS, 2015, 81 (1-2) : 725 - 732
  • [24] Dark solitonic interaction and conservation laws for a higher-order (2+1)-dimensional nonlinear Schrodinger-type equation in a Heisenberg ferromagnetic spin chain with bilinear and biquadratic interaction
    Wang, Qi-Min
    Gao, Yi-Tian
    Su, Chuan-Qi
    Mao, Bing-Qing
    Gao, Zhe
    Yang, Jin-Wei
    ANNALS OF PHYSICS, 2015, 363 : 440 - 456
  • [25] Magnetic breathers and chaotic wave fields for a higher-order (2+1)-dimensional nonlinear Schrodinger-type equation in a Heisenberg ferromagnetic spin chain
    Yin, Hui-Min
    Tian, Bo
    Zhao, Xin-Chao
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 495
  • [26] Bright soliton interactions in a (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf (2 +\mathbf 1) $$\end{document}-dimensional fourth-order variable-coefficient nonlinear Schrödinger equation for the Heisenberg ferromagnetic spin chain
    Chunyu Yang
    Qin Zhou
    Houria Triki
    Mohammad Mirzazadeh
    Mehmet Ekici
    Wen-Jun Liu
    Anjan Biswas
    Milivoj Belic
    Nonlinear Dynamics, 2019, 95 (2) : 983 - 994
  • [27] Bright and dark solitons for a variable-coefficient (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2+1)$$\end{document} dimensional Heisenberg ferromagnetic spin chain equation
    Qian-Min Huang
    Yi-Tian Gao
    Shu-Liang Jia
    Optical and Quantum Electronics, 2018, 50 (4)