Computing singular perturbations for linear elliptic shells

被引:7
|
作者
Bechet, F. [3 ]
Sanchez-Palencia, E. [2 ]
Millet, O. [1 ]
机构
[1] Univ La Rochelle, Lab Etud Phenomenes Transfert Appl, La Rochelle, France
[2] Univ Jussieu, Modelisat Mecan Lab, Jussieu, France
[3] Univ Lille 1, Lab Mecan Lille, Villeneuve, France
关键词
shell theory; singular perturbation; anisotropic mesh generator; logarithmic point singularity;
D O I
10.1007/s00466-007-0204-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the theoretical and numerical study of singular perturbation problems for elliptic inhibited shells. We present a reduction of the classical membrane equations to a partial differential equation with respect to the bending displacement, which is well adapted to the study of singularities of the limit problem. For a discontinuous loading or when the boundary of the loading domain presents corners, we put in a prominent position the existence of two kinds of singularities. One of them is not classical; it reduces to a logarithmic point singularity at the corner of the loading domain. To finish numerical simulations are performed with a finite element software coupled with an anisotropic adaptive mesh generator. They enable to visualize precisely the singularities predicted by the theory with only a very small number of elements.
引用
收藏
页码:287 / 304
页数:18
相关论文
共 50 条
  • [1] Computing singular perturbations for linear elliptic shells
    F. Béchet
    E. Sanchez-Palencia
    O. Millet
    Computational Mechanics, 2008, 42 : 287 - 304
  • [2] Singular perturbations generating complexification phenomena for elliptic shells
    Bechet, F.
    Sanchez-Palencia, E.
    Millet, O.
    COMPUTATIONAL MECHANICS, 2009, 43 (02) : 207 - 221
  • [3] Singular perturbations generating complexification phenomena for elliptic shells
    F. Béchet
    E. Sanchez-Palencia
    O. Millet
    Computational Mechanics, 2009, 43 : 207 - 221
  • [4] Singular Perturbations of Elliptic Operators
    Dyachenko, E.
    Tarkhanov, N.
    COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS VI, PT 1: PDE, DIFFERENTIAL GEOMETRY, RADON TRANSFORM, 2015, 653 : 117 - 136
  • [5] ASYMPTOTIC SOLUTIONS FOR A CLASS OF SEMI-LINEAR ELLIPTIC SINGULAR PERTURBATIONS
    FRANK, LS
    WENDT, WD
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 295 (07): : 451 - 454
  • [6] On singular perturbations of superlinear elliptic systems
    Ramos, Miguel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 352 (01) : 246 - 258
  • [7] Convergence of singular perturbations in singular linear systems
    Tolsa, Javier
    Salichs, Miquel
    Linear Algebra and Its Applications, 1997, 251
  • [8] Convergence of singular perturbations in singular linear systems
    Tolsa, Javier
    Salichs, Miquel
    Linear Algebra and Its Applications, 1997, 251 : 105 - 143
  • [9] Convergence of singular perturbations in singular linear systems
    Tolsa, J
    Salichs, M
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 251 : 105 - 143
  • [10] ANALYTIC SINGULAR PERTURBATIONS OF ELLIPTIC-SYSTEMS
    BONNANS, JF
    CASAS, E
    LOBO, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 122 (02) : 422 - 426