To simultaneously remove hydrogen sulfide and ammonia from hot coal gases, the ammonia decomposition abilities of various metal oxide catalysts were tested in the absence/presence of hydrogen sulfide, at 650 A degrees C. Cobalt oxide, molybdenum oxide, and nickel oxide have high ammonia decomposition abilities (> 95%) in the absence of hydrogen sulfide, but such abilities rapidly decreased during the reaction in the presence of hydrogen sulfide. To improve the simultaneous removal abilities of metal oxides, Zn-based catal sorbents were prepared via impregnation with various metals, such as cobalt, nickel, and molybdenum, on zinc oxide. The CZ-30 (promoted with 30 wt% cobalt oxide on zinc oxide) and NZ-30 (promoted with 30 wt% nickel oxide on zinc oxide) catal sorbents showed excellent sulfur removal capacities, which, calculated until the breakthrough point, were 0.35 and 0.39 g S/g catal sorbent, respectively, while MZ-30 promoted with molybdenum showed a low sulfur removal capacity of 0.08 g S/g catal sorbent. The ammonia decomposition ability of CZ-30, however, increased more than 18 times compared with Co3O4, whose ammonia decomposition ability was more than 95% until 465 min, even though the ammonia decomposition ability of NZ-30 sharply decreased after 30 min. The CZ catal sorbent is a good candidate for the simultaneous removal of ammonia and hydrogen sulfide.