Recursive Projection-Aggregation Decoding of Reed-Muller Codes

被引:34
作者
Ye, Min [1 ]
Abbe, Emmanuel [2 ,3 ]
机构
[1] Tsinghua Berkeley Shenzhen Inst, Data Sci & Informat Technol Res Ctr, Shenzhen 518055, Peoples R China
[2] Ecole Polytech Fed Lausanne EPFL, Math Inst, Sch Comp & Commun Sci, CH-1015 Lausanne, Switzerland
[3] Princeton Univ, Dept Elect Engn, Program Appl & Computat Math, Princeton, NJ 08544 USA
关键词
Decoding; Iterative decoding; AWGN channels; Simulation; Error correction codes; Memoryless systems; Frequency modulation; Reed-Muller codes; polar codes; RPA decoding; binary symmetric channels; POLAR; PERFORMANCE; DECODERS; CAPACITY;
D O I
10.1109/TIT.2020.2977917
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a new class of efficient decoding algorithms for Reed-Muller (RM) codes over binary-input memoryless channels. The algorithms are based on projecting the code on its cosets, recursively decoding the projected codes (which are lower-order RM codes), and aggregating the reconstructions (e.g., using majority votes). We further provide extensions of the algorithms using list-decoding. We run our algorithm for AWGN channels and Binary Symmetric Channels at the short code length (<= 1024) regime for a wide range of code rates. Simulation results show that in both low code rate and high code rate regimes, the new algorithm outperforms the widely used decoder for polar codes (SCL+CRC) with the same parameters. The performance of the new algorithm for RM codes in those regimes is in fact close to that of the maximal likelihood decoder. Finally, the new decoder naturally allows for parallel implementations.
引用
收藏
页码:4948 / 4965
页数:18
相关论文
共 30 条
  • [21] A CLASS OF MULTIPLE-ERROR-CORRECTING CODES AND THE DECODING SCHEME
    REED, IS
    [J]. IRE TRANSACTIONS ON INFORMATION THEORY, 1954, (04): : 38 - 49
  • [22] Sakkour B, 2005, Proceedings of the IEEE ITSOC Information Theory Workshop 2005 on Coding and Complexity, P176
  • [23] Santi E, 2018, IEEE INT SYMP INFO, P1296, DOI 10.1109/ISIT.2018.8437637
  • [24] Efficiently Decoding Reed-Muller Codes From Random Errors
    Saptharishi, Ramprasad
    Shpilka, Amir
    Volk, Ben Lee
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (04) : 1954 - 1960
  • [25] Fast List Decoders for Polar Codes
    Sarkis, Gabi
    Giard, Pascal
    Vardy, Alexander
    Thibeault, Claude
    Gross, Warren J.
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2016, 34 (02) : 318 - 328
  • [26] Sberlo O., 2020, P 14 ANN ACMSIAM S D, P1357
  • [27] Sidelnikov V. M., 1992, Problemy Peredachi Informatsii, V28, P80
  • [28] List Decoding of Polar Codes
    Tal, Ido
    Vardy, Alexander
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (05) : 2213 - 2226
  • [29] Discrete isoperimetric inequalities and the probability of a decoding error
    Tillich, JP
    Zémor, G
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2000, 9 (05) : 465 - 479
  • [30] Ye M, 2019, IEEE INT SYMP INFO, P2064, DOI [10.1109/ISIT.2019.8849269, 10.1109/isit.2019.8849269]