Levinson's theorem for the Klein-Gordon equation in two dimensions

被引:14
作者
Dong, SH
Hou, XW
Ma, ZQ
机构
[1] Inst High Energy Phys, Beijing 100039, Peoples R China
[2] Univ Three Gorges, Dept Phys, Yichang 443000, Peoples R China
[3] China Ctr Adv Sci & Technol, World Lab, Beijing 100080, Peoples R China
来源
PHYSICAL REVIEW A | 1999年 / 59卷 / 02期
关键词
D O I
10.1103/PhysRevA.59.995
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In terms of the modified Sturm-Liouville theorem, the two-dimensional Levinson theorem for the Klein-Gordon equation with a cylindrically symmetric potential V(r) is established for an angular momentum m as a relation between the numbers n(m)(+/-) of the particle and antiparticle bound states and the phase shifts eta m(+/-M): [GRAPHICS] A solution of the Klein-Gordon equation with the energy M or - M is called a half-bound state if it is finite but does not decay fast enough at infinity to be square integrable. [S1050-2947(99)01702-3].
引用
收藏
页码:995 / 1002
页数:8
相关论文
共 29 条
[1]   EXTENSIONS OF LEVINSON THEOREM - APPLICATION TO INDEXES AND FRACTIONAL CHARGE [J].
BLANKENBECLER, R ;
BOYANOVSKY, D .
PHYSICA D, 1986, 18 (1-3) :367-367
[2]   THRESHOLD BEHAVIOR AND LEVINSON THEOREM FOR TWO-DIMENSIONAL SCATTERING SYSTEMS - A SURPRISE [J].
BOLLE, D ;
GESZTESY, F ;
DANNEELS, C ;
WILK, SFJ .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :900-903
[3]   Levinson's theorem for non-local interactions in two dimensions [J].
Dong, SH ;
Hou, XW ;
Ma, ZQ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (37) :7501-7509
[4]   Relativistic Levinson theorem in two dimensions [J].
Dong, SH ;
Hou, XW ;
Ma, ZQ .
PHYSICAL REVIEW A, 1998, 58 (03) :2160-2167
[5]   Levinson's theorem for the Schrodinger equation in two dimensions [J].
Dong, SH ;
Hou, XW ;
Ma, ZQ .
PHYSICAL REVIEW A, 1998, 58 (04) :2790-2796
[6]   LEVINSON THEOREM AND THE 2ND VIRIAL-COEFFICIENT IN ONE-DIMENSION, 2-DIMENSION, AND 3-DIMENSION [J].
GIBSON, WG .
PHYSICAL REVIEW A, 1987, 36 (02) :564-575
[7]  
IWINSKI ZR, 1985, PHYS REV A, V31, P1229, DOI 10.1103/PhysRevA.31.1229
[8]   NODAL STRUCTURE AND PHASE-SHIFTS OF ZERO-INCIDENT-ENERGY WAVE-FUNCTIONS - MULTIPARTICLE SINGLE-CHANNEL SCATTERING [J].
IWINSKI, ZR ;
ROSENBERG, L ;
SPRUCH, L .
PHYSICAL REVIEW A, 1986, 33 (02) :946-953
[9]  
Jauch J. M., 1957, HELV PHYS ACTA, V30, P143
[10]  
Levinson N., 1949, Kgl. Danske Vidensk. Selsk. Mat-fys. Medd, V25, P9