Multi-target Tracking with the Progressive Gaussian Probability Hypothesis Density filter

被引:0
|
作者
Wang, Junjie [1 ]
Zhao, Lingling [1 ]
Su, Xiaohong [1 ]
Shi, Chunmei [2 ]
机构
[1] Harbin Inst Technol, Dept Comp Sci & Technol, Harbin, Heilongjiang, Peoples R China
[2] Northeast Forestry Univ, Dept Math, Harbin, Heilongjiang, Peoples R China
来源
2018 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS) | 2018年
基金
中国国家自然科学基金;
关键词
Multi-Target Tracking; Random Finite Set; Probability Hypothesis Density; Progressive Gaussian Filter;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Particle flow filter implementations of random finite set filters have been proposed to tackle the issue of jointly estimating the number of targets and states. However, errors resulting from linearization are unavoidable. This paper presents a progressive Gaussian implementation of the probability hypothesis density filter, called the PG-PHD filter. The PG-PHD filter employed the progressive Gaussian filter to predict and update instead of the particle flow filter. The proposed algorithm addresses the drawback of Gaussian particle flow filter by using the progressive Gaussian method to migrate particles to the dense regions of the posterior while no need to linear the measurement function. The simulation results show that the performance of proposed PG-PHD improved significantly compared with the particle flow PHD filter.
引用
收藏
页码:78 / 83
页数:6
相关论文
共 50 条
  • [1] GAUSSIAN MIXTURE PROBABILITY HYPOTHESIS DENSITY FILTER ALGORITHM FOR MULTI-TARGET TRACKING
    Hao, Yanling
    Meng, Fanbin
    Zhou, Weidong
    Sun, Feng
    Hu, Anguo
    PROCEEDINGS OF 2009 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS TECHNOLOGY AND APPLICATIONS, 2009, : 738 - 742
  • [2] Multi-Sensor Multi-Target Tracking Using Probability Hypothesis Density Filter
    Liu, Long
    Ji, Hongbing
    Zhang, Wenbo
    Liao, Guisheng
    IEEE ACCESS, 2019, 7 : 67745 - 67760
  • [3] Adaptive Collaborative Gaussian Mixture Probability Hypothesis Density Filter for Multi-Target Tracking
    Yang, Feng
    Wang, Yongqi
    Chen, Hao
    Zhang, Pengyan
    Liang, Yan
    SENSORS, 2016, 16 (10)
  • [4] The Probability Hypothesis Density Filter Based Multi-target Visual Tracking
    Wu JingJing
    Hu ShiQiang
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 2905 - 2909
  • [5] On Adaptive Probability Hypothesis Density Filter for Multi-target Tracking
    Li, Bo
    Wang, Shuo
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 5424 - 5428
  • [6] An improved probability hypothesis density filter for multi-target tracking
    Zhang, Huanqing
    Gao, Li
    Xu, Mingliang
    Wang, Ying
    OPTIK, 2019, 182 : 23 - 31
  • [7] Box Particle Probability Hypothesis Density Filter for Multi-target Visual Tracking
    Cheng H.
    Song L.
    Li C.
    Song, Liping (lpsong@xidian.edu.cn), 2018, Institute of Computing Technology (30): : 282 - 288
  • [8] Probability hypothesis density filter with imperfect detection probability for multi-target tracking
    Gao, Li
    Liu, Huaiwang
    Liu, Hongyun
    OPTIK, 2016, 127 (22): : 10428 - 10436
  • [9] Data Association Combined with the Probability Hypothesis Density Filter for Multi-Target Tracking
    Liu, Yi
    Wang, Ping
    Gao, Yinghui
    Wang, Jia
    Fu, Ruigang
    2015 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS & SIGNAL PROCESSING (WCSP), 2015,
  • [10] A particle filter algorithm for the multi-target probability hypothesis density
    Shoenfeld, PS
    SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XIII, 2004, 5429 : 315 - 325